

Moteurs asynchrones triphasés à haut rendement pour variation de vitesse 0,75 à 132 kW



LEROY-SOMER





Moteurs asynchrones triphasés à haut rendement pour variation de vitesse

### **Un produit mondial**



# Performances garanties en vitesse variable

Leroy-Somer élargit son offre de moteurs asynchrones avec une gamme spécialement adaptée en vitesse variable. Combiné à tous types de variateur de fréquence, le LSMV propose des solutions adaptées au monde industriel en apportant des performances électriques avec un niveau de rendement IE2 et mécaniques en garantissant un couple constant sur une large plage de fonctionnement sans ventilation forcée et sans déclassement.

#### Interchangeabilité

Le moteur LSMV conserve la mécanique CEI 60072-1 (hauteur d'axe, entraxe de fixation et diamètre d'arbre) alors qu'un moteur asynchrone conçu pour un fonctionnement sur réseau pourra être déclassé selon la plage de fonctionnement.

### Modularité et simplicité

Afin de répondre à des exigences de process, le LSMV intègre aisément des capteurs de vitesse (codeurs incrémentaux, absolus, résolveurs, roulements capteurs...), ainsi que des freins et/ou ventilation forcée.

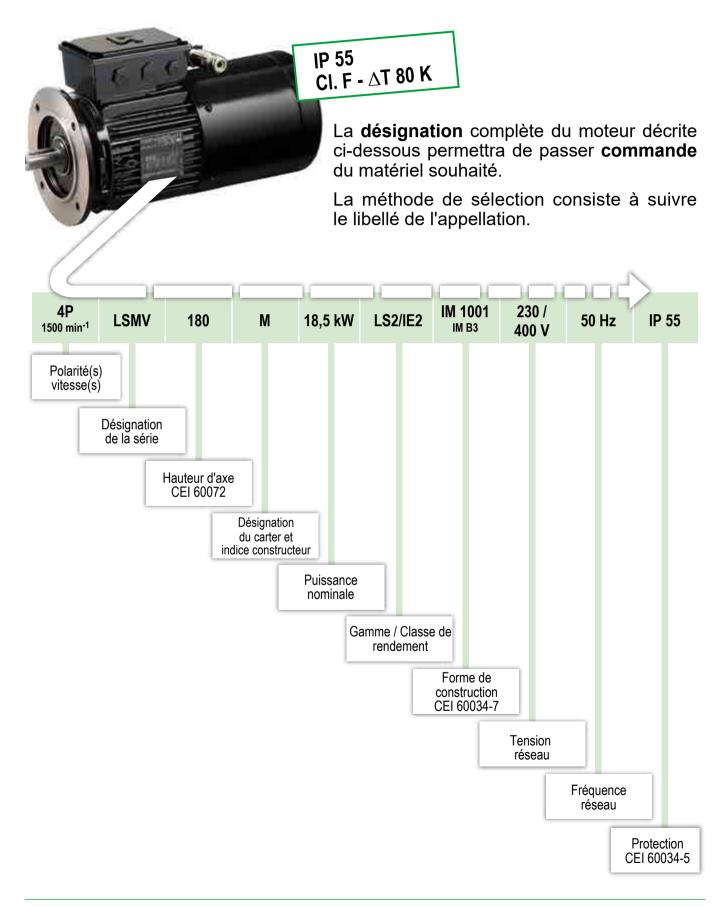


Moteurs asynchrones triphasés à haut rendement pour variation de vitesse

## **Sommaire**

| Index                                                 | 5  | Frein                                                   | 36 |
|-------------------------------------------------------|----|---------------------------------------------------------|----|
| Désignation                                           | 6  | Frein BK                                                | 36 |
| Descriptif                                            | 7  | Caractéristiques LSMV + frein BK                        | 38 |
|                                                       |    | Ventilation forcée                                      | 39 |
| SELECTION                                             |    | Protection thermique                                    | 40 |
| Choix du type d'applications                          | 8  | Raccordement au réseau                                  | 41 |
| Machines centrifuges, machines à couple constant,     |    | Presse-étoupes                                          | 41 |
| machines à puissance constante                        | 8  |                                                         |    |
| Machines 4 quadrants                                  |    | DIMENSIONS                                              |    |
| Choix de la polarité, des options et du frein         |    | Bouts d'arbre                                           | 42 |
| Choix du moteur                                       |    | Pattes de fixation                                      |    |
| Performances du moteur en fonction du couple          |    | Pattes et bride de fixation à trous lisses              |    |
| et de la plage de vitesse en service continu S1       | 10 | Bride de fixation à trous lisses                        |    |
| ot do la plage de vicesse en col vice continu e i     |    | Pattes et bride de fixation à trous taraudés            |    |
|                                                       |    | Bride de fixation à trous taraudés                      |    |
| PERFORMANCES                                          |    | Encombrement des options                                |    |
| Capacité de charge moteurs LSMV sur variateur         |    | Moteurs LSMV avec options                               |    |
| Caractéristiques électriques sur réseau               |    | Moteurs à pattes ou à bride                             |    |
| 2 pôles - 3000 min <sup>-1</sup>                      |    | Moteurs à bride ou à pattes et bride                    |    |
| 4 pôles - 1500 min <sup>-1</sup>                      |    | Motodro a brido oa a pattos ot brido                    |    |
| 6 pôles - 1000 min <sup>-1</sup>                      | 24 | CONCERNATION                                            |    |
| Utilisation du moteur à couple constant de 0 à 87Hz   | 25 | CONSTRUCTION                                            |    |
| Caractéristiques électriques sur variateur            |    | Peinture                                                |    |
| utilisant la loi 400V 87Hz                            | 26 | Définition des ambiances                                |    |
| 2 pôles - 3000 min <sup>-1</sup>                      | 26 | Définition des indices de protection                    |    |
| 4 pôles - 1500 min <sup>-1</sup>                      | 27 | Formes de construction et positions de fonctionnement . |    |
| 6 pôles - 1000 min <sup>-1</sup>                      | 27 | Lubrification                                           |    |
|                                                       |    | Roulements graissés à vie                               |    |
| INSTALLATION MOTO-VARIATEUR                           |    | Paliers à roulements avec graisseur                     |    |
| Installation                                          | 20 | Charges axiales                                         |    |
| Influence du réseau d'alimentation                    |    | Position horizontale                                    |    |
| Liaison des masses                                    |    | Position verticale bout d'arbre en bas                  |    |
| Raccordement des câbles de contrôle                   | 28 | Position verticale bout d'arbre en haut                 |    |
|                                                       | 20 | Charges radiales                                        |    |
| et des câbles codeurs                                 | 28 | Montage standard                                        |    |
|                                                       |    | Montage spécial                                         |    |
| INSTALLATION ET OPTIONS MOTEUR                        |    | Niveau de vibration et vitesses maximales               |    |
| Adaptation du moteur LSMV                             |    | Niveau de vibration des machines - Équilibrage          |    |
| Évolution du comportement moteur                      | 30 | Limites de magnitude vibratoire                         | 63 |
| Conséquences de l'alimentation par variateurs         | 30 | Vitesses mécaniques limites des moteurs en variation    |    |
| Synthèse des protections préconisées                  |    | de fréquence                                            | 63 |
| Isolation renforcée                                   | 32 |                                                         |    |
| Isolation renforcée du bobinage                       | 32 | INFORMATIONS GÉNÉRALES                                  |    |
| Isolation renforcée de la mécanique                   | 32 | Engagement qualité                                      | 64 |
| Retour vitesse                                        | 33 | Normes et agréments                                     | 65 |
| Choix du capteur de position                          | 33 | Homologations                                           | 66 |
| Codeurs incrémentaux                                  | 34 | Définition des services types                           | 67 |
| Codeurs absolus                                       | 34 | Identification                                          | 70 |
| Dynamo tachymétrique                                  | 34 | Configurateur                                           | 71 |
| Caractéristiques des codeurs incrémentaux et absolus. | 35 | Disponibilité des produits                              | 71 |

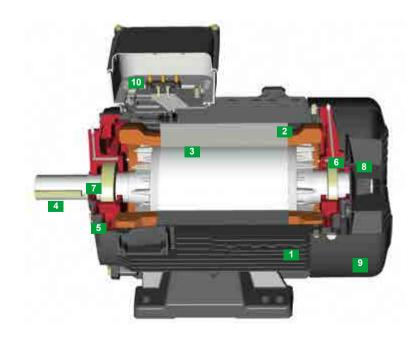
Moteurs asynchrones triphasés à haut rendement pour variation de vitesse


### Index

| Agréments                           | 65-66   | Identification                      | 70      |
|-------------------------------------|---------|-------------------------------------|---------|
| Arbre                               | 42      | Indice de protection                | 51      |
|                                     |         | ISO 9001                            | 64      |
| Boîte à bornes                      | 7-41    | Isolation renforcée                 | 32      |
| Branchement                         | 41      |                                     |         |
|                                     |         | Joints d'étanchéité                 | 7       |
| Capot de ventilation                | 7       | Joints a ctanonette                 |         |
| Caractéristiques électriques        | 22 à 27 | Lubrification des roulements        | 53      |
| Caractéristiques de couple          | 25      | <u> Labimoutori additorionionio</u> |         |
| Carter à ailettes                   | 7       | Mode de fixation                    | 50      |
| CEI                                 | 65-66   | Wode de lixation                    | 52      |
| Charge axiale                       | 54 à 56 | <b>N</b> iveau de vibration         | 60.63   |
| Charge radiale                      | 57 à 60 | Normes                              |         |
| Chicanes                            | 7       | Normes                              | 65-66   |
| Codeur absolu                       | 34      |                                     |         |
| Codeur incrémental                  | 34      | Peinture                            |         |
| Conformité CE                       | 65      | Performances sur variateurs         |         |
| Construction                        | 50      | Plaques signalétiques               |         |
| Couples moteurs                     | 10      | Position de fonctionnement          | 52      |
| CSA                                 | 66      | Presse-étoupe                       | 41      |
|                                     |         | Protection thermique                | 40      |
| Descriptif                          | 7       |                                     |         |
| Désignation                         | 6       | Qualité                             | 64      |
| Dimensions du LSMV                  | 42 à 47 |                                     |         |
| Dimensions du LSMV avec ses options | 48-49   | Raccordement                        | 28-41   |
|                                     |         | Rotor                               | 7       |
| <b>É</b> quilibrage                 | 62      | Roulements                          | 53 à 61 |
| Flasques et paliers                 | 7       | Sélection                           | 8       |
| Formes de construction              |         | Stator                              | 7       |
| Frein                               |         |                                     |         |
|                                     |         | Ventilation forcée                  | 39      |
| Graisse                             | 53      | Vitesse mécaniques                  | 63      |
|                                     |         | •                                   |         |

5

Moteurs asynchrones triphasés à haut rendement pour variation de vitesse


### Désignation



Moteurs asynchrones triphasés à haut rendement pour variation de vitesse

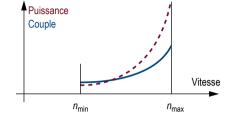
# **Descriptif**

| Désignations                                                          | Matières                                                        | Commentaires                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 Carter à ailettes                                                   | Alliage d'aluminium                                             | - avec pattes monobloc ou vissées, ou sans pattes - fonderie sous pression pour hauteur d'axe ≤ 180 - fonderie coquille gravité hauteur d'axe ≥ 200 • 4 ou 6 trous de fixation pour les carters à pattes • anneaux de levage hauteur d'axe ≥ 100 - borne de masse avec une option de vis cavalier                                                                                                                                                                                                                                                   |
| Tôle magnétique isolée à faible taux de carbone Cuivre électrolytique |                                                                 | <ul> <li>le faible taux de carbone garantit dans le temps la stabilité des caractéristiques</li> <li>encoches semi fermées</li> <li>circuit magnétique qui s'appuie sur l'expérience acquise en variation de fréquence</li> <li>imprégnation permettant de résister aux variations brutales de tensions engendrées par les fréquences de découpage élevées des variateurs à transistor IGBT conformément à la norme CEI 34-17</li> <li>système d'isolation classe F</li> <li>protection thermique assurée par 3 sondes CTP (1 par phase)</li> </ul> |
| 3 Rotor                                                               | Tôle magnétique isolée à faible taux de<br>carbone<br>Aluminium | <ul> <li>encoches inclinées</li> <li>cage rotorique coulée sous-pression en aluminium (ou alliages pour applications particulières)</li> <li>montage fretté à chaud sur l'arbre et claveté pour les applications levage</li> <li>rotor équilibré dynamiquement classe B pour hauteur d'axe ≤ 132</li> </ul>                                                                                                                                                                                                                                         |
| 4 Arbre                                                               | Acier                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5 Flasques paliers                                                    | Fonte                                                           | - hauteur d'axe de 80 à 315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6 Roulements et graissage                                             |                                                                 | - roulements à billes graissés à vie hauteur d'axe 80 à 225<br>- roulements à billes regraissables hauteur d'axe 250 à 315<br>- roulements préchargés à l'arrière                                                                                                                                                                                                                                                                                                                                                                                   |
| 7 Chicane<br>Joints d'étanchéité                                      | Technopolymère ou acier<br>Caoutchouc de synthèse               | - joint ou déflecteur à l'avant pour tous les moteurs à bride<br>- joint, déflecteur ou chicane pour moteur à pattes                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8 Ventilateur                                                         | Matériau composite                                              | - 2 sens de rotation : pales droites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9 Capot de ventilation                                                | Tôle d'acier                                                    | - équipé, sur demande, d'une tôle parapluie pour les fonctionnements en position verticale, bout d'arbre dirigé vers le bas (capot tôle)                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10 Boîte à bornes                                                     | Alliage d'aluminium                                             | <ul> <li>- équipée d'une planchette à bornes acier en standard (laiton en option)</li> <li>- boîte à bornes équipée de bouchons, livrée sans presse-étoupe (presse-étoupe en option)</li> <li>- 1 borne de masse dans toutes les boîtes à bornes</li> <li>- système de fixation par couvercle avec vis imperdables</li> </ul>                                                                                                                                                                                                                       |



Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Sélection

### Choix du type d'applications

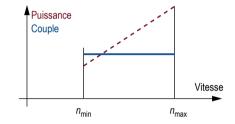

Il existe principalement trois types de charges caractéristiques. Il est essentiel de déterminer la plage de vitesse et le couple (ou puissance) de l'application pour sélectionner le système d'entraînement :

#### **MACHINES CENTRIFUGES**

Le couple varie comme le carré de la vitesse (puissance au cube). Le couple nécessaire à l'accélération est faible (environ 20 % du couple nominal). Le couple de démarrage est faible

- Dimensionnement : en fonction de la puissance ou du couple à la vitesse maximum
- Sélection du variateur en surcharge réduite

Applications types: ventilation, pompage, ...

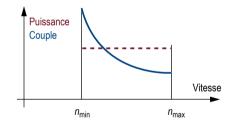



#### **MACHINES À COUPLE CONSTANT**

Le couple reste constant dans la plage de vitesse. Le couple nécessaire à l'accélération peut être important selon les machines (supérieur au couple nominal).

- Dimensionnement : en fonction du couple nécessaire sur la plage de vitesse
- Sélection du variateur en surcharge maximum

Machines types: extrudeuses, broyeurs, ponts roulants, presses, ...

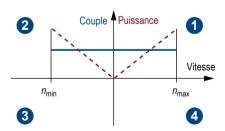



#### **MACHINES À PUISSANCE CONSTANTE**

Le couple décroît dans la plage de vitesse. Le couple nécessaire à l'accélération est au plus égal au couple nominal. Le couple de démarrage est maximum.

- Dimensionnement : en fonction du couple nécessaire à la vitesse minimum et de la plage de vitesse d'utilisation.
- Sélection du variateur en surcharge maximum
- Un retour codeur est conseillé pour une meilleure régulation

Machines types: enrouleurs, broches de machine outil, ...




#### **MACHINES 4 QUADRANTS**

Ces applications ont un type de fonctionnement couple/vitesse décrit ci-dessus, mais la charge devient entraînante dans certaines étapes du cycle.

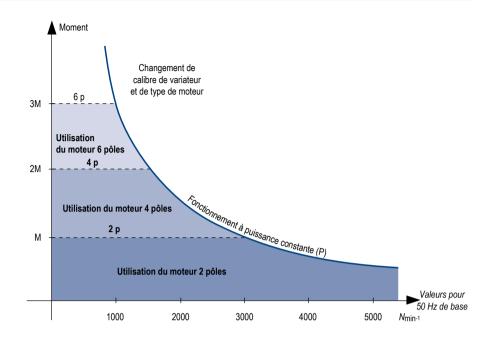
- Dimensionnement : voir ci-dessus en fonction du type de charge
- Dans le cas de freinage répétitif, prévoir un SIR (système d'isolation renforcée)
- Sélection du variateur : pour dissiper l'énergie d'une charge entraînante, il est possible d'utiliser une résistance de freinage, ou de renvoyer l'énergie sur le réseau. Dans ce dernier cas, on utilisera un variateur régénératif ou 4 quadrants.

Machines types : centrifugeuses, ponts roulants, presses, broches de machine outil, ...



Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Sélection

## Choix de la polarité, des options et du frein


#### **POLARITÉ**

La polarité est un des critères principaux.

En effet, comme le montre le graphique ci-contre, la répartition des moments est différente suivant la polarité du moteur utilisé.

Ainsi, pour une utilisation uniquement en basse vitesse, le choix se portera sur un moteur 6 pôles.

A l'inverse, pour un fonctionnement en survitesse le moteur 2 pôles sera sélectionné.



#### **OPTIONS**

Suivant les applications et les contrôleurs de vitesse, certains accessoires sont nécessaires :

#### Ventilation forcée :

- pour le fonctionnement en basse vitesse (<  $n_N/2^*$  pour le moteur LSES et <  $n_N/10^*$  pour le LSMV) en service continu,
- pour le fonctionnement en vitesse haute (étude particulière).

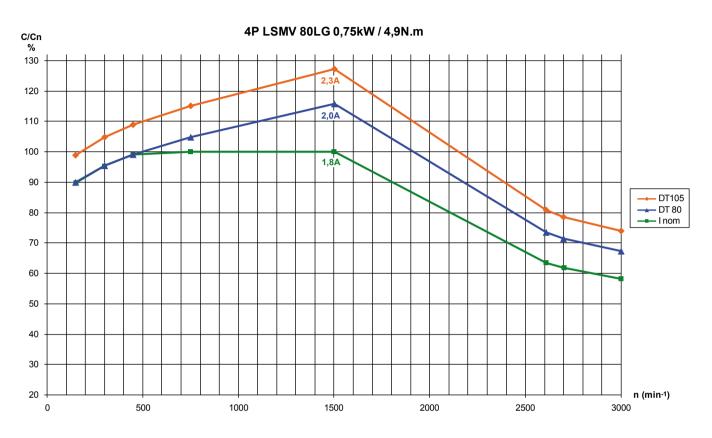
#### Codeur:

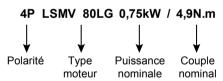
- pour le fonctionnement sur variateur à contrôle vectoriel de flux,
- pour les vitesses inférieures à  $n_N/10^*$ ,
- pour l'obtention d'une précision de vitesse nécessaire à certains asservissements.

#### **FREIN**

Pour le fonctionnement sur variateur, le frein est déterminé selon le nombre de démarrage/heure et le facteur d'inertie.

Facteur d'inertie = (Jc+Jm)/Jm Jm : Inertie du moteur frein Jc : Inertie de la charge au moteur


|                           |     |     | Facteur d'inertie |            |  |  |  |  |  |
|---------------------------|-----|-----|-------------------|------------|--|--|--|--|--|
|                           |     | 0,1 | 1                 | 10         |  |  |  |  |  |
|                           | 1   | BK  | BK                | FCR - FCPL |  |  |  |  |  |
| Arrêt d'urgence par heure | 10  | BK  | FCR-FCPL          | FCR - FCPL |  |  |  |  |  |
|                           | 100 | ВК  | FCR-FCPL          | FCR-FCPL   |  |  |  |  |  |


<sup>\*</sup> $n_N$  = vitesse nominale

Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Sélection

### Choix du moteur

# PERFORMANCES DU MOTEUR EN FONCTION DU COUPLE ET DE LA PLAGE DE VITESSE EN SERVICE CONTINU S1 - 4P 1500 min-1





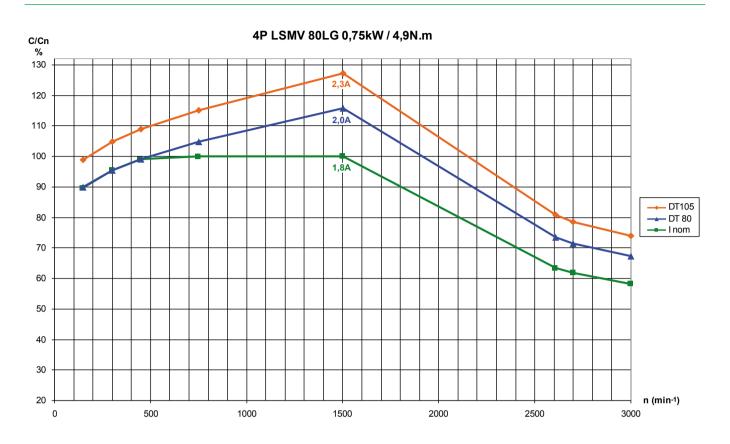
DT105 = Courbe à échauffement F DT80 = Courbe à échauffement B Cnom = Courbe à couple nominal 2,3A = Intensité sur variateur à DT105

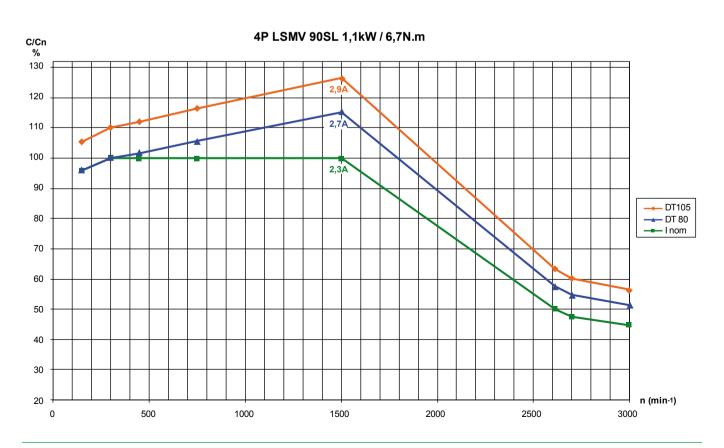
2,0A = Intensité sur variateur à DT80

1,8A = Intensité sur variateur à couple nominal

Pour assurer les performances du moteur LSMV, le calibre du variateur devra être compatible à l'intensité de la courbe sélectionnée.

Toutes les courbes de performance ont été réalisées avec un moteur LSMV autoventilé et un variateur alimenté sur un réseau d'alimentation 400V-50 Hz en mode de contrôle vectoriel boucle ouverte et dans les conditions normales d'utilisation :


- température ambiante 40°C maxi
- altitude 1000 mètres maxi


#### Exemple de sélection :

Pour un couple de 5,4 Nm (soit 110% de C/Cn) de 500 à 1800 min-1 :

- sélection : moteur standard 1,1 kW + variateur
- sélection : moteur LSMV 0,75 kW + variateur 2,3 A


Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Performances





Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Performances





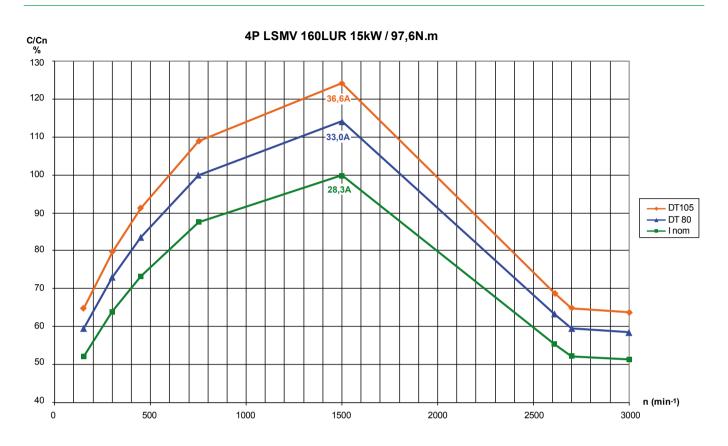

Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Performances





Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Performances

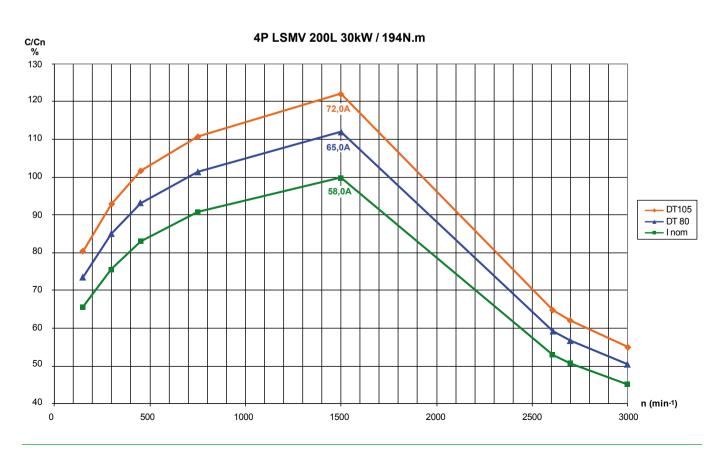





Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Performances

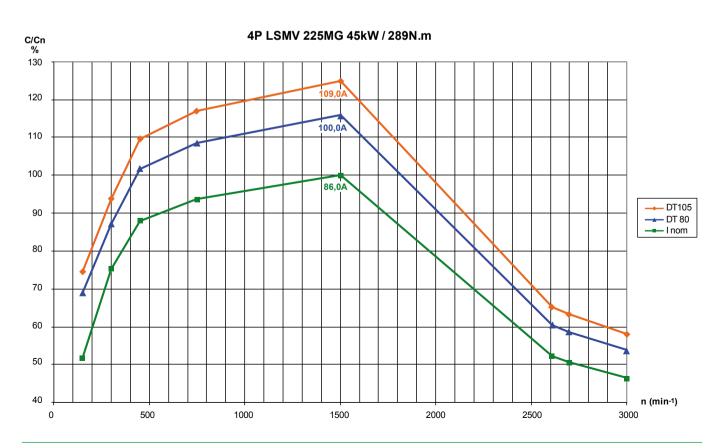




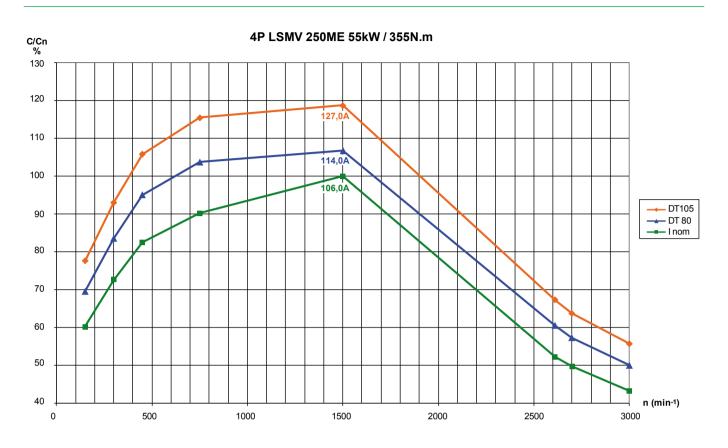

Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Performances

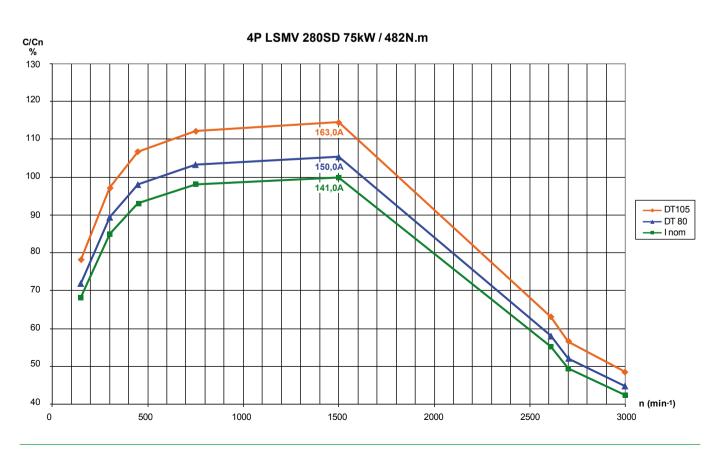





Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Performances







Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Performances





Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Performances





Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Performances





Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Performances



Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Performances

# Caractéristiques électriques sur réseau

### 2 PÔLES - 3000 min<sup>-1</sup> - IP55 - CLASSE F - ∆T80K - S1 - CLASSE IE2

|             | RÉSEAU 400 V 50 Hz    |                     |                   |                       |                         |       |                                    |      |      |                                         |                     |         |       |       |
|-------------|-----------------------|---------------------|-------------------|-----------------------|-------------------------|-------|------------------------------------|------|------|-----------------------------------------|---------------------|---------|-------|-------|
| Туре        | Puissance<br>nominale | Vitesse<br>nominale | Moment<br>nominal | Intensité<br>nominale | Facteur<br>de puissance |       | Rendement<br>CEI 60034-2-1<br>2007 |      |      | Moment<br>maximum/<br>Moment<br>nominal | Moment<br>d'inertie | Masse   | Bruit |       |
| ,,          | P <sub>N</sub>        | N <sub>N</sub>      | M <sub>N</sub>    | I <sub>N (400V)</sub> |                         | Cos φ |                                    |      | η    |                                         |                     | J       | IM B3 | LP    |
|             | kW                    | min <sup>-1</sup>   | N.m               | Α                     | 4/4                     | 3/4   | 2/4                                | 4/4  | 3/4  | 2/4                                     | M <sub>M</sub> /Mn  | kg.m²   | kg    | db(A) |
| LSMV 80 L   | 0,75                  | 2859                | 2,51              | 1,68                  | 0,85                    | 0,77  | 0,66                               | 78,6 | 78,8 | 77,2                                    | 3,0                 | 0,00840 | 9,5   | 61    |
| LSMV 80 L   | 1,1                   | 2845                | 3,7               | 2,34                  | 0,85                    | 0,78  | 0,78                               | 79,7 | 80,9 | 79,2                                    | 3,4                 | 0,00095 | 10,7  | 61    |
| LSMV 90 S   | 1,5                   | 2860                | 4,91              | 3,16                  | 0,84                    | 0,76  | 0,62                               | 81,7 | 82,3 | 80,6                                    | 4,5                 | 0,00149 | 12,9  | 64    |
| LSMV 90 L   | 2,2                   | 2870                | 7,13              | 4,46                  | 0,84                    | 0,76  | 0,63                               | 83,7 | 83,7 | 81,6                                    | 4,1                 | 0,00197 | 16,1  | 64    |
| LSMV 100 L  | 3                     | 2870                | 10,0              | 5,87                  | 0,87                    | 0,81  | 0,69                               | 84,8 | 85,6 | 84,5                                    | 4,0                 | 0,00267 | 22,2  | 66    |
| LSMV 112 MR | 4                     | 2864                | 13,4              | 7,9                   | 0,85                    | 0,79  | 0,66                               | 86,1 | 86,8 | 86,0                                    | 3,7                 | 0,00323 | 26,5  | 66    |
| LSMV 132 S  | 5,5                   | 2923                | 17,9              | 9,98                  | 0,9                     | 0,86  | 0,76                               | 88,1 | 88,9 | 88,4                                    | 3,5                 | 0,00881 | 35    | 72    |
| LSMV 132 SU | 7,5                   | 2923                | 24,1              | 13,3                  | 0,91                    | 0,88  | 0,79                               | 88,1 | 88,9 | 88,9                                    | 3,1                 | 0,01096 | 41    | 72    |
| LSMV 132 M  | 9                     | 2925                | 29,2              | 17,7                  | 0,82                    | 0,75  | 0,63                               | 89,5 | 89,8 | 89,2                                    | 3,6                 | 0,01640 | 50    | 72    |
| LSMV 160 MP | 11                    | 2927                | 35,9              | 21,2                  | 0,84                    | 0,77  | 0,66                               | 89,6 | 90,1 | 89,4                                    | 4,6                 | 0,01940 | 63    | 72    |
| LSMV 160 MR | 15                    | 2924                | 49,22             | 27,2                  | 0,89                    | 0,84  | 0,75                               | 90,4 | 91,4 | 91,3                                    | 3,8                 | 0,02560 | 75    | 72    |
| LSMV 160 L  | 18,5                  | 2944                | 60,1              | 32,9                  | 0,89                    | 0,86  | 0,79                               | 91,5 | 91,9 | 91,4                                    | 3,0                 | 0,05000 | 101   | 72    |
| LSMV 180 MT | 22                    | 2938                | 71,9              | 38,9                  | 0,89                    | 0,87  | 0,8                                | 91,8 | 92,3 | 91,9                                    | 3,2                 | 0,06000 | 105   | 69    |
| LSMV 200 LR | 30                    | 2952                | 97,3              | 51,2                  | 0,92                    | 0,9   | 0,85                               | 92,3 | 92,7 | 92,1                                    | 3,5                 | 0,10000 | 155   | 77    |
| LSMV 200 L  | 37                    | 2943                | 119,0             | 64,8                  | 0,89                    | 0,87  | 0,81                               | 92,6 | 93,1 | 92,7                                    | 2,5                 | 0,12000 | 182   | 73    |
| LSMV 225 MT | 45                    | 2953                | 145,0             | 79,5                  | 0,88                    | 0,85  | 0,78                               | 93,1 | 93,4 | 92,8                                    | 3,4                 | 0,14000 | 203   | 73    |

Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Performances

# Caractéristiques électriques sur réseau

### 4 PÔLES - 1500 min<sup>-1</sup> - IP55 - CLASSE F - ∆T80K - S1 - CLASSE IE2

|              | RÉSEAU 400 V 50 Hz    |                     |                   |                       |      |                      |      |      |                              |      |                                         |                     |       |       |
|--------------|-----------------------|---------------------|-------------------|-----------------------|------|----------------------|------|------|------------------------------|------|-----------------------------------------|---------------------|-------|-------|
| Туре         | Puissance<br>nominale | Vitesse<br>nominale | Moment<br>nominal | Intensité<br>nominale | de   | Facteur<br>e puissan | се   |      | Rendeme<br>El 60034-<br>2007 |      | Moment<br>maximum/<br>Moment<br>nominal | Moment<br>d'inertie | Masse | Bruit |
| •            | P <sub>N</sub>        | N <sub>N</sub>      | M <sub>N</sub>    | I <sub>N (400V)</sub> |      | Cos φ                |      |      | η                            |      | NA //NA                                 | J                   | IM B3 | LP    |
|              | kW                    | min <sup>-1</sup>   | N.m               | Α                     | 4/4  | 3/4                  | 2/4  | 4/4  | 3/4                          | 2/4  | M <sub>M</sub> /Mn                      | kg.m²               | kg    | db(A) |
| LSMV 80 LG   | 0,75                  | 1445                | 4,9               | 1,7                   | 0,71 | 0,72                 | 0,56 | 79,7 | 79,7                         | 76,8 | 2,6                                     | 0,00265             | 11,7  | 47    |
| LSMV 90 SL   | 1,1                   | 1455                | 6,7               | 2,2                   | 0,81 | 0,72                 | 0,57 | 83,5 | 84,2                         | 83,1 | 3,2                                     | 0,00418             | 17,1  | 48    |
| LSMV 90 LU   | 1,5                   | 1455                | 9,4               | 3,1                   | 0,80 | 0,71                 | 0,56 | 84,7 | 85,3                         | 83,7 | 4,0                                     | 0,00488             | 20,4  | 48    |
| LSMV 100 LR  | 2,2                   | 1455                | 14,0              | 4,5                   | 0,79 | 0,68                 | 0,53 | 85,9 | 86,4                         | 84,9 | 3,8                                     | 0,00426             | 24,9  | 48    |
| LSMV 100 LG  | 3                     | 1460                | 19,8              | 6,2                   | 0,81 | 0,75                 | 0,64 | 86,9 | 88,1                         | 87,9 | 3,4                                     | 0,0108              | 32,4  | 48    |
| LSMV 112 MU  | 4                     | 1465                | 26,0              | 8,4                   | 0,78 | 0,70                 | 0,57 | 87,5 | 88,2                         | 87,5 | 3,8                                     | 0,01373             | 40,4  | 49    |
| LSMV 132 SM  | 5,5                   | 1455                | 35,8              | 10,5                  | 0,86 | 0,82                 | 0,72 | 87,9 | 88,6                         | 88,0 | 3,8                                     | 0,02257             | 60,1  | 62    |
| LSMV 132 M   | 7,5                   | 1455                | 48,8              | 14,2                  | 0,85 | 0,79                 | 0,68 | 89,2 | 90,0                         | 89,9 | 4,2                                     | 0,02722             | 70,2  | 62    |
| LSMV 132 MU  | 9                     | 1465                | 58,7              | 18,2                  | 0,8  | 0,73                 | 0,6  | 89,3 | 89,3                         | 87,8 | 5,3                                     | 0,02928             | 70,2  | 62    |
| LSMV 160 MR  | 11                    | 1460                | 71,4              | 21,3                  | 0,83 | 0,77                 | 0,66 | 89,9 | 90,7                         | 90,4 | 4,1                                     | 0,03529             | 78,2  | 62    |
| LSMV 160 LUR | 15                    | 1466                | 97,6              | 27,4                  | 0,86 | 0,81                 | 0,7  | 92,0 | 92,4                         | 92,0 | 3,6                                     | 0,0955              | 103,0 | 62    |
| LSMV 180 M   | 18,5                  | 1469                | 120               | 35,2                  | 0,82 | 0,8                  | 0,67 | 92,4 | 92,6                         | 91,8 | 3,0                                     | 0,1229              | 136,0 | 64    |
| LSMV 180 LUR | 22                    | 1470                | 142               | 40,2                  | 0,85 | 0,8                  | 0,7  | 92,1 | 92,6                         | 92,2 | 3,2                                     | 0,1451              | 155,0 | 64    |
| LSMV 200L    | 30                    | 1474                | 194               | 55,9                  | 0,83 | 0,79                 | 0,68 | 93,4 | 93,8                         | 93,4 | 2,6                                     | 0,2365              | 200,0 | 64    |
| LSMV 225 SR  | 37                    | 1477                | 239               | 68,0                  | 0,84 | 0,80                 | 0,71 | 93,7 | 94,4                         | 94,5 | 2,9                                     | 0,2885              | 235,0 | 64    |
| LSMV 225 MG  | 45                    | 1485                | 289               | 82,0                  | 0,83 | 0,79                 | 0,69 | 94,1 | 94,3                         | 94,2 | 2,9                                     | 0,6341              | 320,0 | 64    |
| LSMV 250 ME  | 55                    | 1484                | 355               | 100,0                 | 0,84 | 0,79                 | 0,68 | 94,5 | 94,9                         | 94,6 | 3,0                                     | 0,732               | 340,0 | 66    |
| LSMV 280 SD  | 75                    | 1485                | 482               | 136,0                 | 0,84 | 0,79                 | 0,68 | 94,9 | 94,9                         | 94,2 | 3,0                                     | 0,9612              | 495,0 | 69    |
| LSMV 280 MK  | 90                    | 1489                | 578               | 161,0                 | 0,85 | 0,8                  | 0,71 | 94,9 | 94,7                         | 93,7 | 3,1                                     | 2,3099              | 655,0 | 69    |
| LSMV 315 SP  | 110                   | 1490                | 705               | 196,0                 | 0,85 | 0,8                  | 0,7  | 95,2 | 94,8                         | 93,5 | 3,6                                     | 3,2642              | 845,0 | 74    |
| LSMV 315 MR  | 132                   | 1489                | 847               | 238,0                 | 0,84 | 0,8                  | 0,7  | 95,3 | 94,9                         | 93,8 | 3,8                                     | 2,7844              | 750,0 | 70    |

Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Performances

# Caractéristiques électriques sur réseau

### 6 PÔLES - 1000 min<sup>-1</sup> - IP55 - CLASSE F - △T80K - S1 - CLASSE IE2

|             | RÉSEAU 400 V 50 Hz    |                     |                   |                       |      |                    |      |                                    |      |      |                                         |                     |       |       |
|-------------|-----------------------|---------------------|-------------------|-----------------------|------|--------------------|------|------------------------------------|------|------|-----------------------------------------|---------------------|-------|-------|
| Туре        | Puissance<br>nominale | Vitesse<br>nominale | Moment<br>nominal | Intensité<br>nominale | de   | Facteur<br>puissan |      | Rendement<br>CEI 60034-2-1<br>2007 |      |      | Moment<br>maximum/<br>Moment<br>nominal | Moment<br>d'inertie | Masse | Bruit |
| •           | P <sub>N</sub>        | N <sub>N</sub>      | M <sub>N</sub>    | I <sub>N (400V)</sub> |      | Cos φ              |      |                                    | η    |      | NA /NA                                  | J                   | IM B3 | LP    |
|             | kW                    | min <sup>-1</sup>   | N.m               | Α                     | 4/4  | 3/4                | 2/4  | 4/4                                | 3/4  | 2/4  | M <sub>M</sub> /Mn                      | kg.m²               | kg    | db(A) |
| LSMV 90 S   | 0,75                  | 953                 | 7,6               | 2,1                   | 0,68 | 0,59               | 0,46 | 76,6                               | 77,1 | 74,4 | 2,1                                     | 0,00319             | 14    | 51    |
| LSMV 90 L   | 1,1                   | 955                 | 11,0              | 3,0                   | 0,67 | 0,58               | 0,45 | 79,1                               | 79,5 | 77,4 | 3,1                                     | 0,0044              | 16,6  | 51    |
| LSMV 100 L  | 1,5                   | 957                 | 14,9              | 4,0                   | 0,66 | 0,58               | 0,45 | 80,5                               | 81,1 | 79,0 | 2,2                                     | 0,00587             | 22,1  | 50    |
| LSMV 112 MG | 2,2                   | 957                 | 20,9              | 5,0                   | 0,73 | 0,65               | 0,51 | 82,2                               | 83,3 | 82,0 | 2,4                                     | 0,011               | 28    | 51    |
| LSMV 132 S  | 3                     | 962                 | 29,1              | 7,0                   | 0,72 | 0,64               | 0,50 | 83,8                               | 84,5 | 83,1 | 3,1                                     | 0,0154              | 38    | 55    |
| LSMV 132 M  | 4                     | 963                 | 39,4              | 9,0                   | 0,75 | 0,68               | 0,56 | 85,2                               | 86,7 | 86,4 | 2,6                                     | 0,0249              | 48    | 55    |
| LSMV 132 MU | 5,5                   | 963                 | 55,0              | 12,9                  | 0,72 | 0,66               | 0,54 | 86,4                               | 87,4 | 86,9 | 2,8                                     | 0,0364              | 63    | 55    |

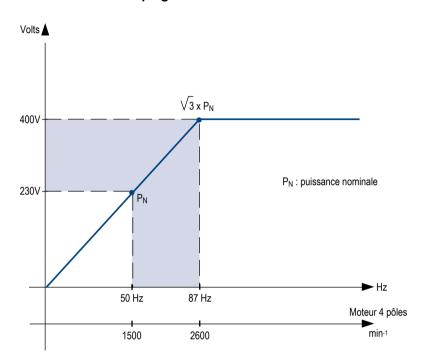
Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Performances

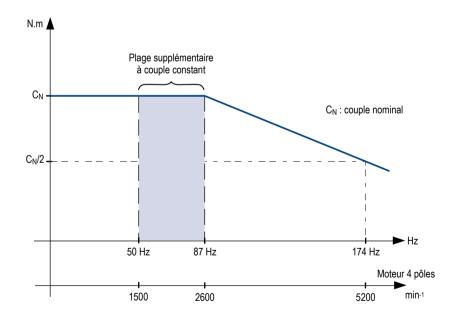
## Utilisation du moteur à couple constant de 0 à 87Hz

L'utilisation du moteur LSMV avec un couplage  $\Delta$  associé à un variateur de fréquence permet d'augmenter la plage à couple constant de 50 à 87 Hz, ce qui permet d'accroître la puissance dans le même rapport.

Le variateur de fréquence sera dimensionné sur la valeur de courant en 230V et programmé avec une loi tension/fréquence de 400V 87 Hz.

#### Exemple de sélection en 4 pôles :


- Pour un couple constant de 195 Nm de 600 à 2500 min<sup>-1</sup> :
  - -> sélection : moteur LSMV 30 kW 4P + variateur 100A


#### Exemple de sélection en 2 pôles :

- Pour une puissance constante de 4 kW de 6000 à 8500 min<sup>-1</sup> :
- -> sélection : moteur LSMV 3 kW 2P + variateur 11A

ATTENTION: Vitesse maxi mécanique à respecter (voir § «Niveau de vibration et vitesses maximales»).

### Caractéristiques moteurs sur variateurs Couplage 230V ∆ réseau 400V 50 Hz





Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Performances

## Caractéristiques électriques sur variateurs utilisant la loi 400V 87Hz

### 2 PÔLES - 3000 min<sup>-1</sup>

|             | ALIMENTATION<br>Moteur connec | _                     | ALIMENTATION 400 V 87 Hz  Moteur connecté en triangle (Δ) |                       |                     |                        |                        |                         |
|-------------|-------------------------------|-----------------------|-----------------------------------------------------------|-----------------------|---------------------|------------------------|------------------------|-------------------------|
|             | Puissance nominale            | Couple nominal        | Puissance nominale                                        | Couple nominal        | Intensité<br>moteur | Vitesse<br>50 Hz       | Vitesse<br>87 Hz       | Facteur<br>de puissance |
| Туре        | P <sub>N</sub><br>kW          | C <sub>N</sub><br>N.m | P <sub>N</sub><br>kW                                      | C <sub>N</sub><br>N.m | I <sub>MOTEUR</sub> | N<br>min <sup>-1</sup> | N<br>min <sup>-1</sup> | Cos φ                   |
| LSMV 80 L   | 0,75                          | 2,5                   | 1,3                                                       | 2,5                   | 3,1                 | 2860                   | 5026                   | 0,85                    |
| LSMV 80 L   | 1,1                           | 3,7                   | 1,9                                                       | 3,7                   | 4,3                 | 2845                   | 5005                   | 0,85                    |
| LSMV 90 S   | 1,5                           | 5                     | 2,6                                                       | 5                     | 5,9                 | 2860                   | 5026                   | 0,84                    |
| LSMV 90 L   | 2,2                           | 7,2                   | 3,8                                                       | 7,2                   | 8,3                 | 2870                   | 5039                   | 0,84                    |
| LSMV 100 L  | 3                             | 10                    | 5,2                                                       | 10                    | 10,9                | 2870                   | 5039                   | 0,87                    |
| LSMV 112 MR | 4                             | 13,4                  | 6,9                                                       | 13,4                  | 14,6                | 2864                   | 5031                   | 0,85                    |
| LSMV 132 S  | 5,5                           | 17,9                  | 9,5                                                       | 17,9                  | 18,5                | 2923                   | 5112                   | 0,90                    |
| LSMV 132 SU | 7,5                           | 24,1                  | 13,0                                                      | 24,1                  | 24,6                | 2923                   | 5112                   | 0,91                    |
| LSMV 132 M  | 9                             | 29,2                  | 15,6                                                      | 29,2                  | 32,7                | 2925                   | 5115                   | 0,82                    |
| LSMV 160 MP | 11                            | 35,9                  | 19,1                                                      | 35,9                  | 39,2                | 2927                   | 5117                   | 0,84                    |
| LSMV 160 MR | 15                            | 49,2                  | 26,0                                                      | 49,2                  | 50,3                | 2928                   | 5119                   | 0,89                    |
| LSMV 160 L  | 18,5                          | 60,1                  | 32,0                                                      | 60,1                  | 60,9                | 2944                   | 5123                   | 0,89                    |
| LSMV 180 MT | 22                            | 71,9                  | 38,1                                                      | 71,9                  | 72,0                | 2938                   | 5112                   | 0,89                    |
| LSMV 200 LR | 30                            | 97,3                  | 52,0                                                      | 97,3                  | 94,7                | 2952                   | 5137                   | 0,92                    |
| LSMV 200 L  | 37                            | 119                   | 64,1                                                      | 119                   | 119,9               | 2943                   | 5121                   | 0,89                    |
| LSMV 225 MT | 45                            | 145                   | 77,9                                                      | 145                   | 147,1               | 2953                   | 5138                   | 0,88                    |

Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Performances

## Caractéristiques électriques sur variateurs utilisant la loi 400V 87Hz

### 4 PÔLES - 1500 min<sup>-1</sup>

|              | ALIMENTATION<br>Moteur connec | _                     | ALIMENTATION 400 V 87 Hz  Moteur connecté en triangle (Δ) |                       |                     |                        |                        |                         |
|--------------|-------------------------------|-----------------------|-----------------------------------------------------------|-----------------------|---------------------|------------------------|------------------------|-------------------------|
| _            | Puissance<br>nominale         | Couple nominal        | Puissance nominale                                        | Couple nominal        | Intensité<br>moteur | Vitesse<br>50 Hz       | Vitesse<br>87 Hz       | Facteur<br>de puissance |
| Туре         | P <sub>N</sub><br>kW          | C <sub>N</sub><br>N.m | P <sub>N</sub><br>kW                                      | C <sub>N</sub><br>N.m | I <sub>MOTEUR</sub> | N<br>min <sup>-1</sup> | N<br>min <sup>-1</sup> | Cos φ                   |
| LSMV 80 LG   | 0,75                          | 4,9                   | 1,3                                                       | 4,9                   | 3,5                 | 1445                   | 2533                   | 0,71                    |
| LSMV 90 SL   | 1,1                           | 7,2                   | 1,9                                                       | 7,2                   | 4,1                 | 1445                   | 2533                   | 0,81                    |
| LSMV 90 LU   | 1,5                           | 9,9                   | 2,6                                                       | 9,9                   | 5,6                 | 1450                   | 2540                   | 0,8                     |
| LSMV 100 LR  | 2,2                           | 14,4                  | 3,8                                                       | 14,4                  | 8,1                 | 1450                   | 2540                   | 0,79                    |
| LSMV 100 LG  | 3                             | 19,6                  | 5,2                                                       | 19,6                  | 11,7                | 1460                   | 2554                   | 0,81                    |
| LSMV 112 MU  | 4                             | 26,1                  | 6,9                                                       | 26,1                  | 16,5                | 1465                   | 2561                   | 0,78                    |
| LSMV 132 SM  | 5,5                           | 36,1                  | 9,5                                                       | 36,1                  | 19,1                | 1455                   | 2547                   | 0,86                    |
| LSMV 132 M   | 7,5                           | 49,1                  | 13,0                                                      | 49,1                  | 25,7                | 1455                   | 2547                   | 0,85                    |
| LSMV 132 MU  | 9                             | 58,7                  | 15,6                                                      | 58,7                  | 33,7                | 1465                   | 2561                   | 0,8                     |
| LSMV 160 MR  | 11                            | 71,4                  | 19,1                                                      | 71,4                  | 39,2                | 1460                   | 2554                   | 0,83                    |
| LSMV 160 LUR | 15                            | 97,6                  | 26,0                                                      | 97,6                  | 50,7                | 1466                   | 2551                   | 0,86                    |
| LSMV 180 M   | 18,5                          | 120                   | 32,0                                                      | 120                   | 65,1                | 1469                   | 2556                   | 0,82                    |
| LSMV 180 LUR | 22                            | 143                   | 38,1                                                      | 143                   | 74,4                | 1470                   | 2558                   | 0,85                    |
| LSMV 200 L   | 30                            | 194                   | 52,0                                                      | 194                   | 100,8               | 1474                   | 2565                   | 0,83                    |
| LSMV 225 SR  | 37                            | 239                   | 64,1                                                      | 239                   | 127,3               | 1477                   | 2570                   | 0,84                    |
| LSMV 225 MG  | 45                            | 290                   | 77,9                                                      | 290                   | 152,4               | 1485                   | 2584                   | 0,83                    |
| LSMV 250 ME  | 55                            | 354                   | 95,3                                                      | 354                   | 183,3               | 1484                   | 2582                   | 0,84                    |
| LSMV 280 SD  | 75                            | 483                   | 129,9                                                     | 483                   | 251,6               | 1485                   | 2584                   | 0,84                    |
| LSMV 280 MK  | 90                            | 578                   | 155,9                                                     | 578                   | 297,9               | 1489                   | 2591                   | 0,85                    |
| LSMV 315 SP  | 110                           | 706                   | 190,5                                                     | 706                   | 362,6               | 1490                   | 2593                   | 0,85                    |
| LSMV 315 MR  | 132                           | 847                   | 228,6                                                     | 847                   | 440,3               | 1489                   | 2591                   | 0,84                    |

### 6 PÔLES - 1000 min<sup>-1</sup>

|             | ALIMENTATION<br>Moteur connec | 1 400 V 50 Hz<br>cté en étoile (Y) | ALIMENTATION 400 V 87 Hz  Moteur connecté en triangle (Δ) |                       |                     |                        |                        |                         |
|-------------|-------------------------------|------------------------------------|-----------------------------------------------------------|-----------------------|---------------------|------------------------|------------------------|-------------------------|
| T           | Puissance<br>nominale         | Couple nominal                     | Puissance<br>nominale                                     | Couple nominal        | Intensité<br>moteur | Vitesse<br>50 Hz       | Vitesse<br>87 Hz       | Facteur<br>de puissance |
| Туре        | P <sub>N</sub><br>kW          | C <sub>N</sub><br>N.m              | P <sub>N</sub><br>kW                                      | C <sub>N</sub><br>N.m | I <sub>MOTEUR</sub> | N<br>min <sup>-1</sup> | N<br>min <sup>-1</sup> | Cos φ                   |
| LSMV 90S    | 0,75                          | 7,6                                | 1,3                                                       | 7,6                   | 3,9                 | 953                    | 1675                   | 0,68                    |
| LSMV 90 L   | 1,1                           | 11                                 | 1,9                                                       | 11                    | 5,6                 | 955                    | 1678                   | 0,67                    |
| LSMV 100 L  | 1,5                           | 14,9                               | 2,6                                                       | 14,9                  | 7,4                 | 957                    | 1680                   | 0,66                    |
| LSMV 112 MG | 2,2                           | 20,9                               | 3,8                                                       | 20,9                  | 9,3                 | 957                    | 1680                   | 0,73                    |
| LSMV 132 S  | 3                             | 29,1                               | 5,2                                                       | 29,1                  | 13,0                | 962                    | 1687                   | 0,72                    |
| LSMV 132 M  | 4                             | 39,4                               | 6,9                                                       | 39,4                  | 16,7                | 963                    | 1688                   | 0,75                    |
| LSMV 132 MU | 5,5                           | 55                                 | 9,5                                                       | 55                    | 23,9                | 963                    | 1688                   | 0,72                    |

Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Installation moto-variateur

### Installation

### INFLUENCE DU RÉSEAU D'ALIMENTATION

Chaque réseau d'alimentation électrique industriel possède des caractéristiques intrinsèques propres (capacité de court-circuit, valeur et fluctuation de tension, déséquilibre de phase ...) et alimente des équipements dont certains peuvent déformer sa tension de manière permanente ou temporaire (encoches, creux de tension, surtension, etc.).

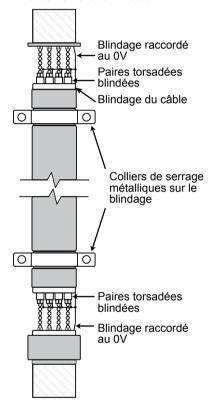
La qualité du réseau d'alimentation a un impact sur la performance et la fiabilité des équipements électroniques et particulièrement des variateurs de vitesse.

#### **LIAISON DES MASSES**

L'équipotentialité des terres de certains sites industriels n'est pas toujours respectée.

Cette non-équipotentialité conduit à des courants de fuite qui circulent via les câbles de terre (vert-jaune), le châssis des machines, les tuyauteries... mais aussi via les équipements électriques. Dans certains cas extrêmes, ces courants peuvent déclencher une mise en sécurité du variateur.

Il est indispensable que le réseau de terre soit étudié et mis en oeuvre par le responsable de l'installation pour que son impédance soit la plus faible possible, afin de répartir les courants de défaut ainsi que les courants hautes fréquences sans que ceux-ci passent au travers des équipements électriques. Les masses métalliques doivent être reliées entre elles mécaniquement avec la plus grande surface de contact électrique possible.


En aucun cas les liaisons de terre destinées à assurer la protection des personnes, en reliant les masses métalliques à la terre par un câble, ne peuvent se substituer aux liaisons de masse (voir CEI 61000-5-2).

L'immunité et le niveau d'émission radio-fréquence sont directement liés à la qualité des liaisons de masses.

### RACCORDEMENT DES CÂBLES DE CONTRÔLE ET DES CÂBLES CODEURS

**ATTENTION**: Dénuder le blindage au niveau des colliers de serrage métalliques afin d'assurer le contact sur 360°.

#### Raccordement au variateur



Raccordement au moteur

Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Installation moto-variateur

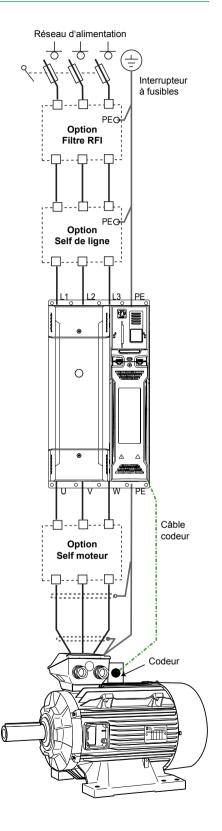
### Installation

Les informations ci-après sont données à titre indicatif, en aucun cas elles ne se substituent aux normes en vigueur ni à la responsabilité de l'installateur.

Enfonction de l'installation, des éléments complémentaires optionnels peuvent venir s'ajouter à l'installation :

Câbles d'alimentation du variateur : ces câbles ne nécessitent pas systématiquement de blindage. Leur section est préconisée dans la documentation variateur, cependant, elle peut être adaptée en fonction du type de câble, du mode de pose, de la longueur du câble (chute de tension), etc. Voir ci-après § «Dimensionnement des câbles de puissance».

Câbles d'alimentation du moteur : ces câbles doivent être blindés pour assurer la conformité CEM de l'installation. Le blindage des câbles doit être raccordé sur 360° aux deux extrémités. Côté moteur, des presses étoupes CEM adaptés sont proposés en option. La section des câbles est préconisée dans la documentation variateur, cependant, elle peut être adaptée en fonction du type de câble, du mode de pose, de la longueur du câble (chute de tension), etc. Voir ci-après § «Dimensionnement des câbles de puissance».


Câbles codeur: le blindage des câbles des capteurs est important en raison des fortes tensions et courants présents en sortie du variateur. Ce câble doit être disposé à 30cm minimum de tout câble de puissance. Voir § «Codeurs».

Dimensionnement des câbles de puissance : les câbles d'alimentation du variateur et du moteur doivent être dimensionnés en fonction de la norme applicable, et selon le courant d'emploi, indiqué dans la documentation variateur. Les différents facteurs à prendre en compte sont :

- Le mode de pose : dans un conduit, un chemin de câbles, suspendus ...
- Le type de conducteur : cuivre ou aluminium.

Une fois la section des câbles déterminée, il faut vérifier la chute de tension aux bornes du moteur. Une chute de tension importante entraîne une augmentation du courant et des pertes supplémentaires dans le moteur (échauffement).

Une mise à la masse motovariateur et transformateur faite dans les règles de l'art contribuera fortement à atténuer la tension d'arbre et de carcasse moteur, ce qui se traduira par une diminution des courants de fuite haute fréquence. Les casses prématurées de roulements et d'équipements auxiliaires tels que des codeurs, seront ainsi évitées en grande partie.



Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Installation et options moteur

### Adaptation du moteur LSMV

Un moteur est toujours caractérisé par les paramètres suivants dépendant de la conception faite :

- classe de température
- plage de tension
- plage de fréquence
- réserve thermique

# ÉVOLUTION DU COMPORTEMENT MOTEUR

Lors d'une alimentation par variateur, on constate une évolution des paramètres ci-dessus en raison des phénomènes suivants:

- chutes de tension dans les composants du variateur
- augmentation du courant dans la proportion de la baisse de tension
- différence d'alimentation moteur suivant le type de contrôle (vectoriel ou *U/F*)

La principale conséquence est une augmentation du courant moteur qui entraîne une augmentation des pertes cuivre et donc un échauffement supérieur du bobinage (même à 50Hz).

Une réduction de la vitesse, entraîne une réduction du débit d'air donc une diminution de l'efficacité du refroidissement, et par conséquent une nouvelle augmentation de l'échauffement du moteur. Inversement, en fonctionnement en service prolongé à grande vitesse, le bruit émis par la ventilation pouvant devenir gênant pour l'environnement, l'utilisation d'une ventilation forcée est conseillée.

Au delà de la vitesse de synchronisme, les pertes fer augmentent et donc contribuent à un échauffement supplémentaire du moteur.

Le mode de contrôle influence l'échauffement du moteur suivant son type :

- une loi *U/F* donne le maximum de tension fondamentale à 50Hz mais nécessite plus de courant en basse vitesse pour obtenir un fort couple de démarrage donc génère un échauffement en basse vitesse lorsque le moteur est mal ventilé.
- le contrôle vectoriel demande moins de courant en basse vitesse tout en assurant un couple important mais régule la tension à 50Hz et induit une chute de tension aux bornes du moteur, donc demande plus de courant à puissance égale.

Conséquences sur le moteur Rappel : Leroy-Somer recommande le raccordement de sondes CTP, surveillées par le variateur, afin de protéger au mieux le moteur.

### CONSÉQUENCES DE L'ALIMENTATION PAR VARIATEURS

L'alimentation du moteur par un variateur de vitesse à redresseur à diodes induit une chute de tension (~5%).

Certaines techniques de MLI permettent de limiter cette chute de tension (~2%), au détriment de l'échauffement de la machine (injection d'harmoniques de rang 5 et 7).

Le signal non sinusoïdal (PWM) fourni par le variateur génère des pics de tension aux bornes du bobinage à cause des grandes variations de tensions liées aux commutations des IGBT (appelés aussi dV/dt). La répétition de ces surtensions peut à terme endommager les bobinages suivant leur valeur et / ou la conception du moteur.

La valeur des pics de tensions est proportionnelle à la tension d'alimentation. Cette valeur peut dépasser la tension limite des bobinages qui est liée au grade du fil, au type d'imprégnation et aux isolants présents ou non dans les fonds d'encoches ou entre phases.

Une autre possibilité d'atteindre des valeurs de tension importante se situe lors de phénomènes de régénération dans le cas de charge entraînante d'où la nécessité de privilégier les arrêts en roue libre ou suivant la rampe la plus longue admissible.

### Recommandations sur le bobinage moteur fonction de la tension d'alimentation

LEROY-SOMER applique différentes solutions moteurs afin de minimiser de tels risques

- Couplage « étoile » chaque fois que possible
- Bobinage série chaque fois que possible
- Ralentissement suivant la rampe la plus longue possible
- De préférence, ne pas utiliser un moteur à sa limite de classe d'isolation. Ces solutions sont préférables à des filtres en sortie de variateurs qui accentuent la chute de tension donc augmentent le courant dans le moteur.

Le système d'isolation des moteurs Leroy-Somer permet une utilisation sur variateur dans sa conception de base quelle que soit la taille de la machine ou de l'application, pour une tension d'alimentation ≤ 480V 50/60Hz et accepte des pics de tension jusqu'à 1500V et des variations de 3500V/µs aux bancs moteur. Ces valeurs sont garanties sans utilisation de filtre aux bornes du moteur.

Pour une tension d'alimentation > 480V, d'autres précautions doivent être prises pour conserver la plus longue durée de vie au moteur, il est impératif d'utiliser le système d'isolation renforcé SIR de Leroy-Somer sauf accord de Leroy-Somer ou utilisation d'un filtre sinusoïdal en tenant compte de la chute de tension aux bornes du moteur (compatible uniquement avec un mode de contrôle U/F).

# Recommandations sur la pivoterie

La forme d'onde de tension en sortie variateur (PWM) peut générer des circulations de courant de fuite haute fréquence, qui, dans certain cas peuvent endommager les roulements du moteur. Ce phénomène s'amplifie avec :

- des tensions d'alimentation réseau élevées,
- l'augmentation de la taille du moteur,
- une mauvaise mise à la masse du système motovariateur,
- une grande longueur de câble entre le variateur et le moteur.
- un mauvais alignement du moteur avec la machine entrainée.

Les machines Leroy-Somer mises à la masse dans les règles de l'art ne nécessitent pas d'options particulières sauf dans les cas listés ci-dessous :

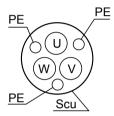
- Pour tension ≤ 480V 50/60Hz, et hauteur d'axe ≥ 315mm, l'utilisation d'un roulement arrière isolé est recommandée.
- Pour tension > 480V 50/60Hz, et hauteur d'axe ≥ 315mm, il est recommandé d'équiper le moteur de deux roulements isolés notamment en l'absence de filtre en sortie variateur.

Si ce dernier est présent alors un seul roulement isolé, côté arrière moteur, est préconisé.

Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Installation et options moteur

### Adaptation du moteur LSMV

#### Bonnes pratiques de câblage


Il est de la responsabilité de l'utilisateur et / ou de l'installateur d'effectuer le raccordement du système motovariateur en fonction de la législation et des règles en vigueur dans le pays dans lequel il est utilisé. Ceci est particulièrement important pour la taille des câbles et le raccordement des masses et terres.

Les informations ci-après sont données à titre indicatif, en aucun cas elles ne se substituent aux normes en vigueur ni à la responsabilité de l'installateur. Pour de plus amples informations il est recommandé de se référer à la note technique CEI 60034-25.

Une mise à la masse motovariateur et transformateur faite dans les règles de l'art contribuera fortement à atténuer la tension d'arbre et de carcasse moteur, ce qui se traduira par une diminution des courants de fuite haute fréquence. Les casses prématurées de roulements et d'équipements auxiliaires tels que des codeurs, seront ainsi évitées en grande partie.

Pour des raisons de sécurité des personnes, les câbles de mise à la terre seront dimensionnés au cas par cas en accord avec la réglementation locale.

Le blindage des conducteurs de puissance entre variateur et moteur est impératif pour être en conformité avec la norme EN 61800-3. Utiliser un câble spécial variation de vitesse: blindé à faible capacité de fuite avec 3 conducteurs PE répartis à 120° (schéma ci-dessous). Il n'est pas nécessaire de blinder les câbles d'alimentation du variateur.



Le câblage motovariateur doit se faire de façon symétrique (U,V,W côté moteur doit correspondre à U,V,W côté variateur) avec mise à la masse du blindage des câbles côté variateur et côté moteur sur 360°.

En second environnement industriel (si un transformateur HT/BT appartient à blindé l'utilisateur), le câble d'alimentation du moteur peut être remplacé par un câble à 3 conducteurs + terre placé dans un conduit métallique fermé sur 360° (goulotte métallique par exemple). Ce conduit métallique doit être relié mécaniquement à l'armoire électrique et à la structure supportant le moteur. Si le conduit comporte plusieurs éléments, ceux-ci doivent être reliés entre eux par des tresses afin d'assurer une continuité de masse. Les câbles doivent être plaqués au fond du conduit.

La borne de terre du moteur (PE) doit être reliée directement à celle du variateur. Un conducteur de protection PE séparé est obligatoire si la conductivité du blindage du câble est inférieure à 50% à la conductivité du conducteur de phase.

### SYNTHÈSE DES PROTECTIONS PRÉCONISÉES

| Tension réseau | Longueur du câble <sup>(1)</sup> | Hauteur d'axe         | Protection du bobinage      | Roulements isolés                     |
|----------------|----------------------------------|-----------------------|-----------------------------|---------------------------------------|
|                | < 20 m                           | Toutes hauteurs d'axe | Standard (2)                | Non                                   |
| ≤ 480 V        | < 250 m                          | <315                  | Standard (2)                | Non                                   |
|                | > 20 m et < 250 m                | ≥315                  | SIR ou filtre variateur (3) | NDE                                   |
|                | < 20 m                           | ~ 160                 | Standard (2)                | Non                                   |
| > 480 V et     |                                  | ≤160                  |                             | Non                                   |
| ≤ 690 V        | < 250 m                          | > 160 et < 315        | SIR ou filtre variateur (3) | NDE                                   |
|                |                                  | ≥315                  | variation .                 | NDE<br>(ou DE + NDE si pas de filtre) |

<sup>(1)</sup> Longueur de câble blindé, cumulée (longueur) par phase entre moteur et variateur, pour un variateur avec une fréquence de découpage de 3kHz.

#### Réglage de la fréquence de découpage

La fréquence de découpage du variateur de vitesse a un impact sur les pertes dans le moteur et le variateur, sur le bruit acoustique et sur l'ondulation du couple.

Une fréquence de découpage basse a un impact défavorable sur l'échauffement des moteurs.

LEROY-SOMER recommande une fréquence de découpage variateur de 3kHz minimum.

En outre, une fréquence de découpage élevée permet d'optimiser le niveau de bruit acoustique et l'ondulation du couple.

<sup>(2)</sup> Isolation standard = 1500 V crête et 3500 V/µs

<sup>(3)</sup> Filtre variateur: Self dV/dt ou filtre sinus.

Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Installation et options moteur

### Isolation renforcée

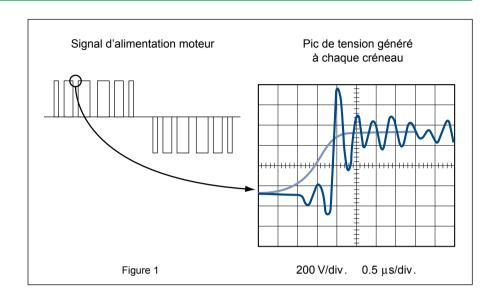
Les moteurs LSMV sont compatibles avec des alimentations caractérisées de la façon suivante :

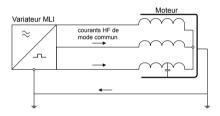
- U efficace = 480V max.
- Valeur des pics de tension générés aux bornes : 1500V max.
- Fréquence de découpage : 2,5 kHz min.

Cependant ils peuvent être alimentés dans des conditions plus sévères moyennant des protections supplémentaires.

### ISOLATION RENFORCÉE DU BOBINAGE

Le principal phénomène lié à l'alimentation par variateur électronique, est un sur-échauffement du moteur dû à la forme non sinusoïdale du signal. En outre, cette dernière peut avoir pour conséquence, une accélération du vieillissement du bobinage de part les pics de tension générés à chaque créneau du signal d'alimentation (voir figure 1).


Pour des valeurs supérieures à 1500V de crête, une option de surisolation du bobinage est disponible sur toute la gamme.

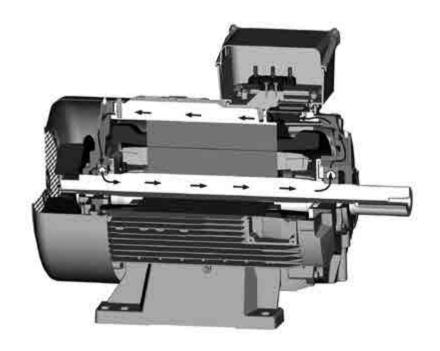

### ISOLATION RENFORCÉE DE LA MÉCANIQUE

L'alimentation par variateur peut influencer la mécanique et entraîner une usure prématurée des roulements.

Il existe, en effet, dans tout moteur une tension d'arbre par rapport à la terre. Cette tension due aux dissymétries électro-mécaniques engendre une différence de potentiel entre le rotor et le stator. Ce phénomène peut générer des décharges électriques entre billes et bagues et entraîner une diminution de la durée de vie des roulements.

Dans le cas d'une alimentation par variateur MLI, un deuxième phénomène vient s'additionner : des courants haute fréquence générés par les ponts IGBT de sortie des variateurs. Ces courants «cherchent» à repartir vers le variateur et passent donc par le stator et par la terre dans le cas où la liaison carcasse / châssis de la machine / terre est correctement effectuée.






Dans le cas contraire, il passera donc par le chemin le moins résistif : flasques /roulements/arbre/machine accouplée au moteur. Il faut donc prévoir dans ces cas de figure une protection des roulements. Une option «roulement isolé» est ainsi disponible sur toute la gamme à partir du 200 de H. A.

# Caractéristiques des roulements isolés

Les bagues externes des roulements sont revêtues d'une couche de céramique électriquement isolante.

Les dimensions ainsi que les tolérances de ces roulements sont identiques aux standards utilisés et se montent donc en lieu et place, sans modification des moteurs. La tension de rupture est de 500V.



Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Installation et options moteur

### **Retour vitesse**

# CHOIX DU CAPTEUR DE POSITION

Le rôle du codeur dans un système d'entraînement est d'améliorer la qualité de la régulation de vitesse du motovariateur quelle que soit la variation de charge à l'arbre moteur ou de permettre un positionnement.

#### On distingue trois types de codeurs :

| Incrér                   | nental             | Abs                                 | Absolu     |                         |  |  |  |
|--------------------------|--------------------|-------------------------------------|------------|-------------------------|--|--|--|
| Binaire                  | Analogique Binaire |                                     | Analogique | Analogique              |  |  |  |
| Codeur<br>Monotour       | Codeur<br>Monotour | Codeur<br>Monotour / Multitour      | Résolveur  | Dynamo<br>Tachymétrique |  |  |  |
| TTL (5V)<br>HTL (10-30V) | Sin/Cos            | SSI ; BiSS-C ;<br>EnDat ; Hiperface | Monotour   | Monotour                |  |  |  |

Les principaux types de codeurs sont des codeurs incrémentaux qui en cas de coupure d'alimentation ne mémorisent pas la position, soit absolus permettant un redémarrage de la machine entraînée sans reprise de référence.

Intégrés au moteur, ils sont conçus pour travailler à des températures ambiantes élevées et à un niveau de vibration compatible avec les exigences du moteur.

La conception mécanique du LSMV permet d'être auto ventilé en standard et le cumul d'option type frein et ventilation forcée nécessaire pour l'aspect thermique à basse vitesse  $\leq 5$  Hz et à haute vitesse  $\geq 75$  Hz.

Les codeurs incrémentaux et absolus sont livrés en standard avec des connecteurs M23 mâles / femelles.



Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Installation et options moteur

### **Retour vitesse**

### **CODEURS INCRÉMENTAUX**

Ce générateur d'impulsions délivre un nombre d'impulsions sur les voies A,A/, B,B/, top 0, top 0/ proportionnel à la vitesse.

Un codeur 1024 points est suffisant pour la majorité des applications. Toutefois, pour des exigences de stabilité en très basse vitesse (<10 tr/min) il est conseillé d'utiliser un codeur de résolution supérieure.

#### Câblage du connecteur :

Borne 1: 0V Borne 8: 0/ Borne 2: +Vcc Borne 9: NC Borne 3: A Borne 10: NC Borne 4: B Borne 11: NC Borne 12: NC Borne 5: 0

Borne 6: A/

Borne 7: B/ Blindage / carter

connecteur



#### **CODEURS ABSOLUS**

Les codeurs absolus permettent de sauvegarder la position dans le tour, ou sur plusieurs tours, en cas de coupure de l'alimentation. Une prise d'origine n'est plus nécessaire.

Les informations sont transmises par différents protocoles de communication (EnDat, Hiperface, SSI, BiSS-C...) certains protocoles sont la propriété d'un fournisseur (EnDat / Heidenhain et Hiperface / Sick).

Dans certains cas, une information type SinCos ou incrémentale est également disponible.

#### Codeurs absolus Monotour

Le codeur absolu Monotour convertit une rotation de l'arbre d'entraînement en une succession de «pas codés élecUne rotation d'arbre comporte en

déterminé par un disque optique.

général 8192 pas, ce qui correspond à 13 bits. Au bout d'un tour d'arbre complet du codeur. les mêmes valeurs se répètent.

triques». Le nombre de pas par tour est

#### **Codeurs absolus Multitours**

Le codeur absolu Multitour sauvegarde la position dans le tour et également sur plusieurs tours, avec un maximum de 4096 tours.

#### Résolveur

Alimenté par une tension alternative et constitué d'un stator et d'un rotor bobiné, il produit deux tensions dont la combinaison permet de déterminer la position du rotor.

L'intérêt de ce capteur réside dans sa robustesse (pas d'électronique) et sa grande fiabilité dans des ambiances sévères (température élevée, vibration...).



### DYNAMO TACHYMÉTRIQUE

La dynamo tachymétrique est un générateur électrique qui fournit une tension continue proportionnelle à la vitesse. Nous proposons en standard le type KTD3 arbre creux Ø14 mm 20V/ 1000 min-1.



Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Installation et options moteur

### **Retour vitesse**

### CARACTÉRISTIQUES DES CODEURS INCRÉMENTAUX

| Type de codeur                                                     | Codeurs incrémentaux |          |                         |         |                         |          |                         |          |                      |                         |  |  |
|--------------------------------------------------------------------|----------------------|----------|-------------------------|---------|-------------------------|----------|-------------------------|----------|----------------------|-------------------------|--|--|
|                                                                    |                      |          | Standard                |         |                         |          |                         |          |                      | Sin Cos                 |  |  |
| Référence codeur                                                   | ERN420               | ERN430   | RI64                    |         | DHO5S                   |          | 5020                    |          | ERN480               | DHO 514                 |  |  |
| Tension d'alimentation                                             | 5Vdc                 | 10/30Vdc | 5Vdc                    | 5/26Vdc | 5Vdc                    | 11/30Vdc | 5/30Vdc                 | 10/30Vdc | 5Vdc                 | 5Vdc                    |  |  |
| Etage de sortie                                                    | TTL (RS422)          | HTL      | TTL (RS422)             | HTL     | TTL (RS422)             | HTL      | TTL (RS422)             | HTL      | 1V ~                 | 1V ~                    |  |  |
| Courant max. (sans charge)                                         | 150 r                | mA       | 40 mA                   | 24 mA   | 75 mA                   |          | 90 mA                   | 100 mA   | 150 mA               | 75 mA                   |  |  |
| Positions par tour<br>en standard<br>(sur demande 1 à 5000 points) | 1024 ou 4096         |          | 1024 ou 4096            |         | 1024 ou 4096            |          | 1024 ou 4096            |          | 1024<br>ou<br>4096   | 1024<br>ou<br>4096      |  |  |
| Vitesse mécanique<br>max. en continu                               | 10 000 min-1         |          | 6 000 min <sup>-1</sup> |         | 6 000 min <sup>-1</sup> |          | 6 000 min <sup>-1</sup> |          | 10 000 min-1         | 6 000 min <sup>-1</sup> |  |  |
| Diamètre Arbre                                                     | 14 mm <sup>(1)</sup> |          | 14 mm <sup>(1)</sup>    |         | 14 mm <sup>(1)</sup>    |          | 14 mm <sup>(1)</sup>    |          | 14 mm <sup>(1)</sup> | 14 mm <sup>(1)</sup>    |  |  |
| Protection                                                         | IP64                 |          | IP64                    |         | IP65                    |          | IP65                    |          | IP64                 | IP65                    |  |  |
| Température<br>de fonctionnement                                   | -40° +85°C           |          | -40° +100°C             |         | -30° +100°C             |          | -40° +85°C              |          | -30° +100°C          | -30° +100°C             |  |  |
| Finition du câble côté moteur                                      | M2:<br>12 pi         | -        | M23<br>12 pins          |         | M23<br>12 pins          |          | M23<br>12 pins          |          | M23<br>12 pins       | M23<br>12 pins          |  |  |
| Homologation                                                       | CE, cURus            | , UL/CSA | CE                      |         | CE                      |          | CE, cURus               |          | CE, cURus,<br>UL/CSA | CE                      |  |  |

<sup>(1)</sup> Arbre creux traversant

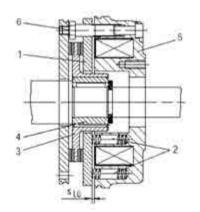
### CARACTÉRISTIQUES DES CODEURS ABSOLUS

| <b>T</b>                                                           | Codeurs absolus Codeurs absolus |                                        |                      |                       |          |                          |                          |                |                        |                       |          |                                  |
|--------------------------------------------------------------------|---------------------------------|----------------------------------------|----------------------|-----------------------|----------|--------------------------|--------------------------|----------------|------------------------|-----------------------|----------|----------------------------------|
| Type de codeur                                                     |                                 |                                        | Mono-to              |                       |          | Multi-tours (4096 tours) |                          |                |                        |                       |          |                                  |
| Interface de données (2)                                           | EnDat 2.1®                      | s                                      | SI                   | SinCos<br>SSI/BiSS-C® |          | SinCos<br>Hiperface®     | EnDat 2.1®               | SSI            |                        | SinCos<br>SSI/BiSS-C® |          | SinCos<br>Hiperface <sup>®</sup> |
| Référence codeur                                                   | ECN 413                         | ECN 413                                | AFS 60               | 5873                  |          | SFS 60                   | EQN 425                  | EQN 425 AFM 60 |                        | 5883                  |          | SFM 60                           |
| Tension d'alimentation                                             | 3,6/14Vdc                       | 10/30Vdc                               | 4,5/32Vdc            | 5Vdc                  | 10/30Vdc | 7/12Vdc                  | 3,6/14Vdc                | 10/30Vdc       | 4,5/32Vdc              | 5Vdc                  | 10/30Vdc | 7/12Vdc                          |
| Etage de sortie                                                    | 1V                              | ~                                      | 1V~                  | 1V ~                  |          | 1V ~                     | 1V ~                     |                | 1V ~                   | 1V ~                  |          | 1V ~                             |
| Courant max. (sans charge)                                         | 110 mA                          | 45 mA                                  | 30 mA                | 70 mA                 | 45 mA    | 80 mA                    | 140 mA                   | 55 mA          | 30 mA                  | 80 mA                 | 50 mA    | 80 mA                            |
| Positions par tour<br>en standard<br>(sur demande 1 à 5000 points) |                                 | 4096<br>max.:8192<br>409<br>max<br>819 |                      | 4096<br>max. : 16 384 |          | 4096<br>max. :<br>32 768 | 4096<br>max.: 8192       |                | 4096<br>max. :<br>8192 | 4096<br>max. : 16 384 |          | 4096<br>max.:<br>32 768          |
| Vitesse mécanique<br>max. en continu                               | 12 000                          | 12 000 min <sup>-1</sup> 9 000 n       |                      | 6 000 min-1           |          | 6 000 min <sup>-1</sup>  | 12 000 min <sup>-1</sup> |                | 9 000 min-1            | 6 000 min-1           |          | 6 000 min-1                      |
| Diamètre Arbre                                                     | 14 m                            | m <sup>(1)</sup>                       | 14 mm <sup>(1)</sup> | 14 mm <sup>(1)</sup>  |          | 14 mm <sup>(1)</sup>     | 14 mm <sup>(1)</sup>     |                | 14 mm <sup>(1)</sup>   | 14 mm <sup>(1)</sup>  |          | 14 mm <sup>(1)</sup>             |
| Protection                                                         | IP64                            |                                        | IP65                 | IP65                  |          | IP65                     | IP64                     |                | IP65                   | IP65                  |          | IP65                             |
| Température<br>de fonctionnement                                   | -40° +85°C                      |                                        | -30°<br>+100°C       | -40° +90°C            |          | -30°<br>+115°C           | -40° +85°C               |                | -30°<br>+100°C         | -40° +90°C            |          | -30°<br>+115°C                   |
| Finition du câble côté moteur                                      | M2<br>17 p                      |                                        | M23<br>12 pins       | M23<br>12 pins        |          | M23<br>12 pins           | M23<br>17 pins           |                | M23<br>12 pins         | M23<br>12 pins        |          | M23<br>12 pins                   |
| Homologation                                                       | CE, cURus                       | s, UL/CSA                              | CE,<br>cURus         | CE,                   | cURus    | CE, cURus                | CE, cURus, UL/CSA        |                | CE,<br>cURus           | CE, cURus             |          | CE, cURus                        |

<sup>(1)</sup> Arbre creux traversant (2) EnDat 2.2 sur demande

Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Installation et options moteur

### **Frein**


#### **FREIN BK**

Le frein BK, frein à manque de courant, mono disque (1) à deux faces de friction, est utilisé comme frein ralentisseur et / ou comme frein d'urgence.

#### Principe de fonctionnement

Une friction produite par plusieurs ressorts (2) génère un couple de freinage qui permet de tenir différentes charges. La transmission du couple de freinage du moyeu (4) au rotor 3 s'effectue par des cannelures. Les garnitures de frictions assurent un couple de freinage élevé avec une usure minimale. Ce composant ne nécessite ni entretien ni réglage.

Le déblocage du frein s'effectue par un champ électromagnétique produit par la bobine (5) en présence d'une tension à ses bornes. Les freins sont livrés prêts à l'emploi (entrefer préréglé) avec la cellule de pilotage montée dans la boîte à bornes. Une option «déblocage manuel» est disponible sur demande.



- 1 Disque d'armature
- 2 Ressorts de pression
- 3 Rotor
- 4 Moyeu
- 5 Corps inducteur
- 6 Vis creuses

#### Alimentation sous 230V:

Type de cellule: S08

Tension redressée: 210V double

alternance

Tension nominale bobine frein: 190V

Tension aux bornes du frein : 1 - Udc = 0,45 x Uac (400V) 2 - Udc = 0,9 x Uac (230V)

#### Alimentation sous 400V:

Type de cellule : S08

Tension redressée : 210V simple

alternance

Tension nominale bobine frein: 190V

Tension aux bornes du frein : 1 - Udc = 0,45 x Uac (400V) 2 - Udc = 0,9 x Uac (230V)



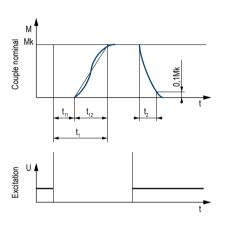
| Frein     | Hauteur d'axe |
|-----------|---------------|
| Type BK   | 80 à 132      |
| Type FCR  | 80 à 132      |
| Type FCPL | 160 à 250     |

Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Installation et options moteur

## Frein

#### Caractéristiques

|       | Puissance    | Résistance | Courant       | Co                            | uple de freina                | age                           | Vitesse max. |
|-------|--------------|------------|---------------|-------------------------------|-------------------------------|-------------------------------|--------------|
| Туре  | à 20 °C<br>W | Ohm        | absorbé<br>mA | 1000 min <sup>-1</sup><br>N.m | 1500 min <sup>-1</sup><br>N.m | 3000 min <sup>-1</sup><br>N.m | min-1        |
| BK 08 | 25           | 1444       | 131,5         | 8                             | 6,8                           | 6,24                          | 10100        |
| BK 16 | 30           | 1203       | 157,8         | 16                            | 9,96                          | 9,12                          | 8300         |
| BK 32 | 40           | 902,5      | 210,5         | 32                            | 25,92                         | 23,68                         | 6700         |
| BK 60 | 50           | 722        | 263,1         | 60                            | 48                            | 43,8                          | 6000         |
| BK 80 | 60           | 601,7      | 315,7         | 80                            | 63,2                          | 57,6                          | 5300         |

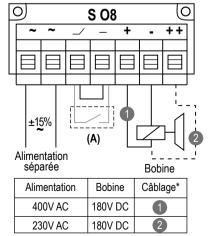

#### Temps de manœuvre

| Туре   | Couple<br>de freinage<br>à 1000 min-1 | Travail<br>de friction<br>maxi. | Fréquence<br>de<br>manœuvre | Co                    |                       | ôté courant co<br>de réponse | ontinu               |
|--------|---------------------------------------|---------------------------------|-----------------------------|-----------------------|-----------------------|------------------------------|----------------------|
| .,,,,, | N.m                                   | J                               | par heure                   | t <sub>11</sub><br>ms | t <sub>12</sub><br>ms | t,<br>ms                     | t <sub>2</sub><br>ms |
| BK 08  | 8                                     | 7500                            | 50                          | 15                    | 16                    | 31                           | 57                   |
| BK 16  | 16                                    | 12000                           | 40                          | 28                    | 19                    | 47                           | 76                   |
| BK 32  | 32                                    | 24000                           | 30                          | 28                    | 25                    | 53                           | 115                  |
| BK 60  | 60                                    | 30000                           | 28                          | 17                    | 25                    | 42                           | 210                  |
| BK 80  | 80                                    | 36000                           | 27                          | 27                    | 30                    | 57                           | 220                  |

Le passage d'un couple de freinage à un couple permanent s'effectue avec un certain retard.

Les temps de déclenchement correspondent à une commutation côté courant continu avec une tension d'induction environ cinq à dix fois supérieure à la tension nominale. La figure ci-contre montre le retard de réponse à l'enclenchement  $t_{11}$ , le temps de montée en couple  $t_{12}$ , le temps d'enclenchement  $t_1$  =  $t_{11}$  +  $t_{12}$  et le temps  $t_2$ .

Le temps de coupure n'est pas modifié par la commutation côté courant continu ou alternatif. Il peut être raccourci grâce à des appareils spéciaux avec carte d'excitation rapide ou surexcitation.




- t<sub>1</sub> Temps d'enclenchement
- Temps de coupure (jusqu'à ce que M = 0,1 M<sub>K</sub>)
- $t_{11}$  Retard de réponse à l'enclenchement
- t<sub>12</sub> Temps de montée en couple

#### Temps de freinage / Inertie maxi tolérable

| Туре  | Inertie<br>à 1000 min <sup>-1</sup><br>kg.m <sup>2</sup> | Temps<br>de freinage<br>ms | Inertie<br>à 1500 min <sup>-1</sup><br>kg.m <sup>2</sup> | Temps<br>de freinage<br>ms | Inertie<br>à 3000 min <sup>-1</sup><br>kg.m <sup>2</sup> | Temps<br>de freinage<br>ms |
|-------|----------------------------------------------------------|----------------------------|----------------------------------------------------------|----------------------------|----------------------------------------------------------|----------------------------|
| BK 08 | 1,367                                                    | 17,89                      | 0,607                                                    | 12                         | 0,152                                                    | 6                          |
| BK 16 | 2,188                                                    | 14,32                      | 0,973                                                    | 9,45                       | 0,243                                                    | 4,7                        |
| BK 32 | 4,37                                                     | 14,3                       | 1,945                                                    | 9,547                      | 0,486                                                    | 4,7                        |
| BK 60 | 5,47                                                     | 9,54                       | 2,431                                                    | 6,364                      | 0,608                                                    | 3,18                       |
| BK 80 | 6,565                                                    | 8,59                       | 2,92                                                     | 5,73                       | 0,73                                                     | 2,86                       |

#### Schéma de câblage



\*suivant alimentation et bobine

Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Installation et options moteur

## **Frein**

## **CARACTÉRISTIQUES LSMV + FREIN BK**

## 2 pôles - 3000 min-1

|             |       |                       |                              | ALIME             | NTATION DU      | FREIN 230 ou          | 400 V AC / 20  | 5 V DC                          |                     |       |
|-------------|-------|-----------------------|------------------------------|-------------------|-----------------|-----------------------|----------------|---------------------------------|---------------------|-------|
| Туре        | Туре  | Puissance<br>nominale | Vitesse<br>maxi<br>mécanique | Moment<br>nominal | Moment freinage | Consommation du frein | Temps<br>appel | Temps<br>retombée<br>coupure DC | Moment<br>d'inertie | Masse |
| moteur      | frein | P <sub>N</sub>        | N <sub>S</sub>               | M <sub>N</sub>    | M <sub>F</sub>  | I <sub>F</sub>        | t <sub>1</sub> | t <sub>2</sub>                  | J                   | IM B3 |
|             |       | kW                    | min <sup>-1</sup>            | N.m               | N.m             | Α                     | ms             | ms                              | kg.m <sup>2</sup>   | kg    |
| LSMV 80 L   | BK 8  | 0,75                  | 0,75 10 100                  |                   | 8               | 0,13                  | 32             | 60                              | 0,0009              | 13    |
| LSMV 80 L   | BK 8  | 1,1                   | 10 100                       | 3,7               | 8               | 0,13                  | 32             | 60                              | 0,001               | 14    |
| LSMV 90 S   | BK 16 | 1,5                   | 10 100                       | 4,9               | 16              | 0,15                  | 47             | 73                              | 0,0017              | 16    |
| LSMV 90 L   | BK 16 | 2,2                   | 8 300                        | 7,1               | 16              | 0,15                  | 47             | 73                              | 0,0022              | 22    |
| LSMV 100 L  | BK 32 | 3                     | 8 300                        | 10,0              | 32              | 0,21                  | 57             | 111                             | 0,0031              | 30    |
| LSMV 112 MR | BK 32 | 4                     | 8 300                        | 13,4              | 32              | 0,21                  | 57             | 111                             | 0,0037              | 35    |
| LSMV 132 S  | BK 60 | 5,5                   | 6 700                        | 17,9              | 60              | 0,26                  | 38             | 213                             | 0,015               | 45    |
| LSMV 132 SU | BK 60 | 7,5                   | 6 700                        | 24,1              | 60              | 0,26                  | 38             | 213                             | 0,016               | 51    |
| LSMV 132 M  | BK 60 | 9                     | 6 000                        | 29,2              | 60              | 0,26                  | 38             | 213                             | 0,017               | 60    |
| LSMV 160 MP | BK 80 | 11                    | 5 300                        | 35,9              | 80              | 0,31                  | 53             | 221                             | 0,019               | 73    |
| LSMV 160 MR | BK 80 | 15                    | 5 300                        | 49,2              | 80              | 0,31                  | 53             | 221                             | 0,026               | 85    |

## 4 pôles - 1500 min-1

|             |       |                       |                              | ALIME             | NTATION DU         | FREIN 230 ou          | 400 V AC / 20  | 5 V DC                          |                     |       |
|-------------|-------|-----------------------|------------------------------|-------------------|--------------------|-----------------------|----------------|---------------------------------|---------------------|-------|
| Туре        | Туре  | Puissance<br>nominale | Vitesse<br>maxi<br>mécanique | Moment<br>nominal | Moment<br>freinage | Consommation du frein | Temps<br>appel | Temps<br>retombée<br>coupure DC | Moment<br>d'inertie | Masse |
| moteur      | frein | P <sub>N</sub>        | N <sub>S</sub>               | M <sub>N</sub>    | M <sub>F</sub>     | I <sub>F</sub>        | t <sub>1</sub> | t <sub>2</sub>                  | J                   | IM B3 |
|             |       | kW                    | min <sup>-1</sup>            | N.m               | N.m                | Α                     | ms             | ms                              | kg.m <sup>2</sup>   | kg    |
| LSMV 80 LG  | BK 8  | 0,75                  | 10 100                       | 4,9               | 8                  | 0,13                  | 32             | 60                              | 0,0027              | 16    |
| LSMV 90 SL  | BK 16 | 1,1                   | 8 300                        | 6,7               | 16                 | 0,15                  | 47             | 73                              | 0,0044              | 20,9  |
| LSMV 90 LU  | BK 16 | 1,5                   | 8 300                        | 9,4               | 16                 | 0,15                  | 47<br>57<br>57 | 73                              | 0,0051              | 22    |
| LSMV 100 LR | BK 32 | 2,2                   | 6 700                        | 14,0              | 32                 | 0,21                  |                | 111                             | 0,0047              | 30    |
| LSMV 100 LG | BK 32 | 3                     | 6 700                        | 19,8              | 32                 | 0,21                  |                | 111                             | 0,0011              | 38    |
| LSMV 112 MU | BK 32 | 4                     | 6 700                        | 26,0              | 32                 | 0,21                  | 57             | 111                             | 0,015               | 45    |
| LSMV 132 SM | BK 60 | 5,5                   | 6 000                        | 35,8              | 60                 | 0,26                  | 38             | 213                             | 0,023               | 72    |
| LSMV 132 M  | BK 60 | 7,5                   | 6 000                        | 48,8              | 60                 | 0,26                  | 38             | 213                             | 0,028               | 84    |
| LSMV 132 MU | BK 80 | 9                     | 5 300                        | 58,7              | 80                 | 0,31                  | 53             | 221                             | 0,030               | 95    |
| LSMV 160 MR | BK 80 | 11                    | 5 300                        | 71,4              | 80                 | 0,31                  | 53             | 221                             | 0,035               | 103   |

## 6 pôles - 1000 min-1

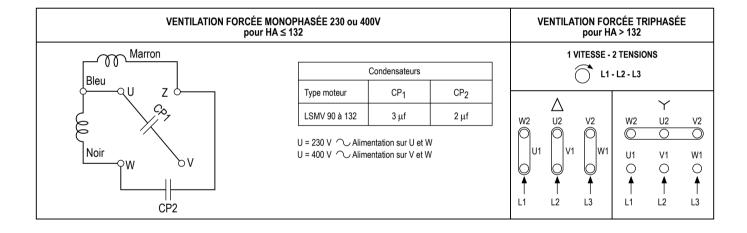
|             |       |                       |                              | ALIME             | NTATION DU      | FREIN 230 ou          | 400 V AC / 20  | 5 V DC                          |                     |       |
|-------------|-------|-----------------------|------------------------------|-------------------|-----------------|-----------------------|----------------|---------------------------------|---------------------|-------|
| Туре        | Туре  | Puissance<br>nominale | Vitesse<br>maxi<br>mécanique | Moment<br>nominal | Moment freinage | Consommation du frein | Temps<br>appel | Temps<br>retombée<br>coupure DC | Moment<br>d'inertie | Masse |
| moteur      | frein | P <sub>N</sub>        | N <sub>S</sub>               | M <sub>N</sub>    | M <sub>F</sub>  | I <sub>F</sub>        | t <sub>1</sub> | t <sub>2</sub>                  | J                   | IM B3 |
|             |       | kW                    | min <sup>-1</sup>            | N.m               | N.m             | Α                     | ms             | ms                              | kg.m <sup>2</sup>   | kg    |
| LSMV 90 S   | BK 16 | 0,75                  | 8 300                        | 7,6               | 16              | 0,15                  | 47             | 73                              | 0,005               | 18    |
| LSMV 90 L   | BK 16 | 1,1                   | 0,75 8 300                   |                   | 16              | 0,15                  | 47             | 73                              | 0,005               | 21    |
| LSMV 100 L  | BK 32 | 1,5                   | 6 700                        | 14,9              | 32              | 0,21                  | 57             | 111                             | 0,006               | 27    |
| LSMV 112 MG | BK 32 | 2,2                   | 6 700                        | 20,9              | 32              | 0,21                  | 57             | 111                             | 0,01                | 34    |
| LSMV 132 S  | BK 60 | 3                     | 6 000                        | 29,1              | 60              | 0,26                  | 38             | 213                             | 0,02                | 52    |
| LSMV 132 M  | BK 60 | 4                     | 6 000                        | 39,4              | 60              | 0,26                  | 38             | 213                             | 0,03                | 62    |
| LSMV 132 MU | BK 60 | 5,5                   | 6 000                        | 55                | 60              | 0,26                  | 38             | 213                             | 0,04                | 77    |

Moteurs asynchrones triphasés à haut rendement pour variation de vitesse

Installation et options moteur

## Ventilation forcée

Les moteurs sont autoventilés en standard


Pour tenir le couple nominal sur toute la plage de vitesse, la ventilation forcée peut être nécessaire.

#### Caractéristiques des ventilations forcées

| Type moteur               | Tension d'alimentation <sup>(1)</sup>            | Consomr | nation VF | Indice de protection <sup>(2)</sup> |
|---------------------------|--------------------------------------------------|---------|-----------|-------------------------------------|
| rype moteur               | VF                                               | P (W)   | I (A)     | VF                                  |
| LSMV 80 à 132             | 7 <b>80 à 132</b> monophasé 230 ou 400V triphasé |         | 0,43/0,25 | IP 55                               |
| LSMV 160 à 280 SD         | triphasé<br>230/400V 50Hz<br>254/460V 60Hz       | 150     | 0,94/0,55 | IP 55                               |
| LSMV 280 MK<br>LSMV 315 M | triphasé<br>230/400V 50Hz<br>254/460V 60Hz       | 750     | 3,6/2,1   | IP 55                               |

<sup>(1) ± 10 %</sup> en tension, ± 2 % en fréquence.

<sup>(2)</sup> Indice de protection de la ventilation forcée montée sur le moteur.



Moteurs asynchrones triphasés à haut rendement pour variation de vitesse

Installation et options moteur

## **Protection thermique**

La protection des moteurs est assurée par le variateur de vitesse, placé entre le sectionneur et le moteur.

Le variateur de vitesse assure une protection globale du moteur contre les surcharges.

Les moteurs sont équipés de sondes CTP dans le bobinage. En option des sondes spécifiques de protection thermique peuvent être sélectionnées dans le tableau ci-après.

Il faut souligner qu'en aucun cas ces sondes ne peuvent être utilisées pour réaliser une régulation directe des cycles d'utilisation des moteurs.

## Montage des différentes protections

- PTO ou PTF, dans les circuits de commande.
- CTP, avec relais associé, dans les circuits de commande.
- PT 100 ou thermocouples, avec appareil de lecture associé (ou enregistreur), dans les tableaux de contrôle des installations pour suivi en

#### Alarme et pré-alarme

Tous les équipements de protection peuvent être doublés (avec des TNF différentes) : le premier équipement servant de pré-alarme (signaux lumineux ou sonores, sans coupure des circuits de puissance), le second servant d'alarme (assurant la mise hors tension des circuits de puissance).

Les moteurs sont équipés

de CTP en standard

#### Protections thermiques indirectes incorporées

| Туре                                                                                    | Principe du fonctionnement                                     | Courbe de fonctionnement                | Pouvoir<br>de coupure (A)       | Protection assurée                                                     | Montage<br>Nombre d'appareils*                                                                                         |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------|---------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Protection thermique<br>à ouverture<br>PTO                                              | Bilame à chauffage<br>indirect avec contact<br>à ouverture (O) | T O TNF                                 | 2,5 A sous 250 V<br>à cos φ 0,4 | surveillance globale<br>surcharges lentes                              | Montage dans circuit<br>de commande<br>2 ou 3 en série                                                                 |
| Protection thermique<br>à fermeture<br>PTF                                              | Bilame à chauffage<br>indirect avec contact<br>à fermeture (F) | I T T T T T T T T T T T T T T T T T T T | 2,5 A sous 250 V<br>à cos φ 0,4 | surveillance globale<br>surcharges lentes                              | Montage dans circuit<br>de commande<br>2 ou 3 en parallèle                                                             |
| Thermistance<br>à coefficient de<br>température positif<br>CTP                          | Résistance variable non linéaire à chauffage indirect          | R T TNF                                 | 0                               | surveillance globale<br>surcharges rapides                             | Montage avec relais associé dans circuit de commande 3 en série                                                        |
| Sonde thermique<br>KT Y                                                                 | Résistance dépend<br>de la température<br>de l'enroulement     | R                                       | 0                               | surveillance continue<br>de grande précision<br>des points chauds clés | Montage dans les tableaux<br>de contrôle avec appareil de lecture<br>associé (ou enregistreur)<br>1/point à surveiller |
| Thermocouples  7 (T < 150 °C)  Cuivre Constantan  K (T < 1000 °C)  Cuivre Cuivre-Nickel | Effet Peltier                                                  | ΔΤ                                      | 0                               | surveillance continue<br>ponctuelle<br>des points chauds               | Montage dans les tableaux<br>de contrôle avec appareil de lecture<br>associé (ou enregistreur)<br>1/point à surveiller |
| Sonde thermique<br>au platine<br>PT 100                                                 | Résistance variable<br>linéaire à<br>chauffage indirect        | R                                       | 0                               | surveillance continue<br>de grande précision<br>des points chauds clés | Montage dans les tableaux<br>de contrôle avec appareil de lecture<br>associé (ou enregistreur)<br>1/point à surveiller |

<sup>-</sup> TNF: température nominale de fonctionnement.

<sup>-</sup> Les TNF sont choisies en fonction de l'implantation de la sonde dans le moteur et de la classe d'échauffement.

<sup>-</sup> kTy standard = 84 / 130

<sup>\*</sup>Le nombre d'appareils concerne la protection du bobinage.

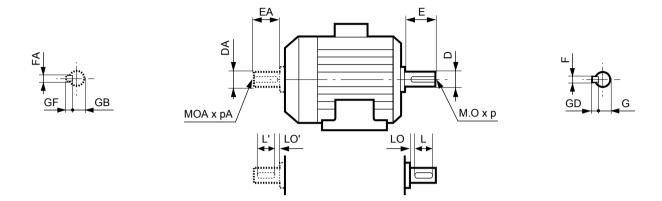
Moteurs asynchrones triphasés à haut rendement pour variation de vitesse

Installation et options moteur

## Raccordement au réseau

Les moteurs sont livrés avec boîtes à bornes prépercées et taraudées ou plaque support non percée pour montage de presse-étoupes

## PRESSE-ÉTOUPES

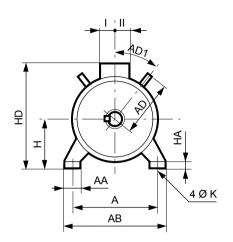

Dans certains cas d'application, il est nécessaire d'assurer une continuité de masse entre le câble et la masse moteur pour garantir une protection de l'installation conforme à la directive CEM 89/336/UE. Une option presse-étoupe avec ancrage sur câble armé est donc disponible sur toute la gamme.

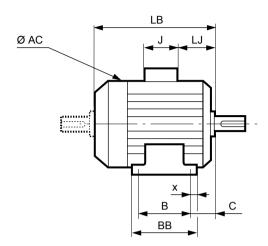
#### Nombre et type de presse-étoupe

|        |               |                                                                                      | Market data barre November    | Puissance          | e + auxiliaires                      |
|--------|---------------|--------------------------------------------------------------------------------------|-------------------------------|--------------------|--------------------------------------|
| Séries | Туре          | LG 2;4;6  G/MU 2;4;6  /M/MU 2;4;6  R 2;4;6  R 2;4;6  R 2;4  T/LUR 2;4  T/MG 2;4  K 4 | Matériau de la boîte à bornes | Nombre de perçages | Diamètre de perçage                  |
|        | 80 L/LG       | 2;4;6                                                                                |                               |                    |                                      |
|        | 90 S/SL/L     | 2;4;6                                                                                |                               | 2                  | 1 x M20 + 1 x M16                    |
|        | 100 L/LR/LG   | 2;4;6                                                                                |                               | 2                  | 1 X WIZU + 1 X WI TO                 |
|        | 112 MR/MG/MU  | 2;4;6                                                                                |                               |                    |                                      |
|        | 132 S/SM/M/MU | 2;4;6                                                                                |                               | 2                  | 1 x M25 + 1 x M16                    |
|        | 160 MP/MR     | 2;4;6                                                                                |                               |                    | T X IVIZO + T X IVITO                |
| LSMV   | 160 L/LUR     | 2;4                                                                                  | Alliage d'aluminium           |                    | 2 x M25 + 1 x M16                    |
|        | 180 MT/M/LUR  | 2;4                                                                                  | 7 tillage a diarillillari     |                    | 2 x M40 + 1 x M16                    |
|        | 200 LR/L      | 2;4                                                                                  |                               | 3                  | 2 X IVI4U + 1 X IVI I U              |
|        | 225 SR/MT/MG  | 2;4                                                                                  |                               | J                  | 2 x M50 + 1 x M16                    |
|        | 250 ME        | 4                                                                                    |                               |                    | 2 x M63 + 1 x M16                    |
|        | 280 SD/MK     | 4                                                                                    |                               |                    | 2 X IVIO3 + 1 X IVI 10               |
|        | 315 SP/MR     | 4                                                                                    |                               | 0                  | Support plaque démontable non percée |

Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Dimensions

## **Bouts d'arbre**



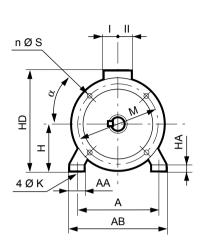


|                       |    |    |      |      |          |    | Bou | ıts d'arb | re princ | ipal |    |      |      |         |    |    |     |    |
|-----------------------|----|----|------|------|----------|----|-----|-----------|----------|------|----|------|------|---------|----|----|-----|----|
|                       |    |    |      | 4 (  | et 6 pôl | es |     |           |          |      |    |      |      | 2 pôles |    |    |     |    |
| Туре                  | F  | GD | D    | G    | Е        | 0  | р   | L         | LO       | F    | GD | D    | G    | Е       | 0  | р  | L   | LO |
| LSMV 80 L/LG          | 6  | 6  | 19j6 | 15,5 | 40       | 6  | 16  | 30        | 6        | 6    | 6  | 19j6 | 15,5 | 40      | 6  | 16 | 30  | 6  |
| LSMV 90 S/SL/L/LU     | 8  | 7  | 24j6 | 20   | 50       | 8  | 19  | 40        | 6        | 8    | 7  | 24j6 | 20   | 50      | 8  | 19 | 40  | 6  |
| LSMV 100 L/LR/LG      | 8  | 7  | 28j6 | 24   | 60       | 10 | 22  | 50        | 6        | 8    | 7  | 28j6 | 24   | 60      | 10 | 22 | 50  | 6  |
| LSMV 112 MR/MG/MU     | 8  | 7  | 28j6 | 24   | 60       | 10 | 22  | 50        | 6        | 8    | 7  | 28j6 | 24   | 60      | 10 | 22 | 50  | 6  |
| LSMV 132 S/SU/SM/M/MU | 10 | 8  | 38k6 | 33   | 80       | 12 | 28  | 63        | 10       | 10   | 8  | 38k6 | 33   | 80      | 12 | 28 | 63  | 10 |
| LSMV 160 MP/MR/LUR    | 12 | 8  | 42k6 | 37   | 110      | 16 | 36  | 100       | 6        | 12   | 8  | 42k6 | 37   | 110     | 16 | 36 | 100 | 6  |
| LSMV 180 M/LUR        | 14 | 9  | 48k6 | 42,5 | 110      | 16 | 36  | 98        | 12       | 14   | 9  | 48k6 | 42,5 | 110     | 16 | 36 | 98  | 12 |
| LSMV 200 L            | 16 | 10 | 55m6 | 49   | 110      | 20 | 42  | 97        | 13       | 16   | 10 | 55m6 | 49   | 110     | 20 | 42 | 97  | 13 |
| LSMV 225 SR/MR        | 18 | 11 | 60m6 | 53   | 140      | 20 | 42  | 126       | 14       | 16   | 10 | 55m6 | 49   | 110     | 20 | 42 | 97  | 13 |
| LSMV 250 ME           | 18 | 11 | 65m6 | 58   | 140      | 20 | 42  | 126       | 14       |      |    |      |      |         |    |    |     |    |
| LSMV 280 SD/MK        | 20 | 12 | 75m6 | 67,5 | 140      | 20 | 42  | 125       | 15       |      |    |      |      |         |    |    |     |    |
| LSMV 315 SP/MR        | 22 | 14 | 80m6 | 71   | 170      | 20 | 42  | 155       | 15       |      |    |      |      |         |    |    |     |    |

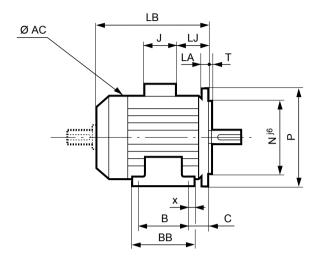
|                       |    |    |      |           |     |    | Bout | s d'arbr | e secon | daire |    |      |         |     |    |    |     |     |
|-----------------------|----|----|------|-----------|-----|----|------|----------|---------|-------|----|------|---------|-----|----|----|-----|-----|
|                       |    |    | 4 (  | et 6 pôle | es  |    |      |          |         |       |    |      | 2 pôles |     |    |    |     |     |
| Туре                  | FA | GF | DA   | GB        | EA  | OA | pА   | L'       | LO'     | FA    | GF | DA   | GB      | EA  | OA | pА | L'  | LO' |
| LSMV 80 L/LG          | 5  | 5  | 14j6 | 11        | 30  | 5  | 15   | 25       | 3,5     | 5     | 5  | 14j6 | 11      | 30  | 5  | 15 | 25  | 3,5 |
| LSMV 90 S/SL/L/LU     | 6  | 6  | 19j6 | 15,5      | 40  | 6  | 16   | 30       | 6       | 6     | 6  | 19j6 | 15,5    | 40  | 6  | 16 | 30  | 6   |
| LSMV 100 L/LR/LG      | 8  | 7  | 24j6 | 20        | 50  | 8  | 19   | 40       | 6       | 8     | 7  | 24j6 | 20      | 50  | 8  | 19 | 40  | 6   |
| LSMV 112 MR/MG/MU     | 8  | 7  | 24j6 | 20        | 50  | 8  | 19   | 40       | 6       | 8     | 7  | 24j6 | 20      | 50  | 8  | 19 | 40  | 6   |
| LSMV 132 S/SU/SM/M/MU | 8  | 7  | 28k6 | 24        | 60  | 10 | 22   | 50       | 6       | 8     | 7  | 28k6 | 24      | 60  | 10 | 22 | 50  | 6   |
| LSMV 160 MP/MR        | 12 | 8  | 38k6 | 37        | 80  | 16 | 36   | 100      | 6       | 12    | 8  | 38k6 | 37      | 80  | 16 | 36 | 100 | 6   |
| LSMV 160 LUR          | 12 | 8  | 42k6 | 37        | 110 | 16 | 36   | 100      | 6       | 12    | 8  | 42k6 | 37      | 110 | 16 | 36 | 100 | 6   |
| LSMV 180 M/L/LU       | 14 | 9  | 48k6 | 42,5      | 110 | 16 | 36   | 98       | 12      | 14    | 9  | 48k6 | 42,5    | 110 | 16 | 36 | 98  | 12  |
| LSMV 200 LT/L         | 16 | 10 | 55m6 | 49        | 110 | 20 | 42   | 97       | 13      | 16    | 10 | 55m6 | 49      | 110 | 20 | 42 | 97  | 13  |
| LSMV 225 SR/MR/MG     | 18 | 11 | 60m6 | 53        | 140 | 20 | 42   | 126      | 14      | 16    | 10 | 55m6 | 49      | 110 | 20 | 42 | 97  | 13  |
| LSMV 250 ME           | 18 | 11 | 60m6 | 53        | 140 | 20 | 42   | 126      | 14      | 18    | 11 | 60m6 | 53      | 140 | 20 | 42 | 126 | 14  |
| LSMV 280 SD/SC/MC/MK  | 18 | 11 | 65m6 | 58        | 140 | 20 | 42   | 126      | 14      |       |    |      |         |     |    |    |     |     |
| LSMV 315 SP/MP/MR     | 22 | 14 | 80m6 | 71        | 170 | 24 | 42   | 155      | 15      |       |    |      |         |     |    |    |     |     |

Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Dimensions

## Pattes de fixation IM 1001 (IM B3)







| _            |     |     |     |     |     |    |     | ı    | Dimensi | ions pri | ncipales | 3   |       |       |     |     |      |     |     |
|--------------|-----|-----|-----|-----|-----|----|-----|------|---------|----------|----------|-----|-------|-------|-----|-----|------|-----|-----|
| Туре         | Α   | AB  | В   | BB  | С   | X  | AA  | K    | HA      | Н        | AC*      | HD  | LB    | LJ    | J   | ı   | ll l | AD  | AD1 |
| LSMV 80 L    | 125 | 157 | 100 | 120 | 50  | 10 | 29  | 9    | 10      | 80       | 170      | 221 | 212   | 13,5  | 160 | 55  | 55   | -   | -   |
| LSMV 80 LG   | 125 | 157 | 100 | 125 | 50  | 14 | 31  | 9    | 10      | 80       | 185      | 231 | 243   | 13,5  | 160 | 55  | 55   | -   | -   |
| LSMV 90 S    | 140 | 172 | 100 | 120 | 56  | 10 | 37  | 10   | 11      | 90       | 190      | 241 | 212   | 13,5  | 160 | 55  | 55   | -   | -   |
| LSMV 90 SL   | 140 | 172 | 100 | 162 | 56  | 28 | 39  | 10   | 11      | 90       | 190      | 241 | 239   | 13,5  | 160 | 55  | 55   | -   | -   |
| LSMV 90 L    | 140 | 172 | 125 | 162 | 56  | 28 | 39  | 10   | 11      | 90       | 190      | 241 | 239   | 13,5  | 160 | 55  | 55   | -   | -   |
| LSMV 90 LU   | 140 | 172 | 125 | 162 | 56  | 28 | 39  | 10   | 11      | 90       | 190      | 241 | 265   | 13,5  | 160 | 55  | 55   | -   | -   |
| LSMV 100 L   | 160 | 196 | 140 | 165 | 63  | 12 | 40  | 12   | 13      | 100      | 200      | 256 | 288   | 14,5  | 160 | 55  | 55   | 118 | 45  |
| LSMV 100 LR  | 160 | 196 | 140 | 165 | 63  | 12 | 40  | 12   | 13      | 100      | 200      | 256 | 314   | 14,5  | 160 | 55  | 55   | 118 | 45  |
| LSMV 100 LG  | 160 | 196 | 140 | 170 | 63  | 11 | 49  | 12   | 13      | 100      | 230      | 265 | 305   | 23,5  | 160 | 55  | 55   | -   | -   |
| LSMV 112 MR  | 190 | 220 | 140 | 165 | 70  | 13 | 45  | 12   | 14      | 112      | 200      | 268 | 314   | 14,5  | 160 | 55  | 55   | -   | -   |
| LSMV 112 MG  | 190 | 220 | 140 | 165 | 70  | 12 | 52  | 12   | 14      | 112      | 235      | 277 | 305   | 23,5  | 160 | 55  | 55   | 118 | 45  |
| LSMV 112 MU  | 190 | 220 | 140 | 165 | 70  | 12 | 52  | 12   | 14      | 112      | 235      | 277 | 333   | 23,5  | 160 | 55  | 55   | -   | -   |
| LSMV 132 S   | 216 | 250 | 140 | 170 | 89  | 16 | 42  | 12   | 16      | 132      | 220      | 300 | 350   | 40,5  | 160 | 55  | 55   | 130 | 45  |
| LSMV 132 SU  | 216 | 250 | 140 | 170 | 89  | 16 | 42  | 12   | 16      | 132      | 220      | 300 | 377   | 40,5  | 160 | 55  | 55   | 130 | 45  |
| LSMV 132 SM  | 216 | 250 | 140 | 208 | 89  | 15 | 50  | 12   | 15      | 132      | 265      | 318 | 410   | 50    | 160 | 55  | 55   | 140 | 45  |
| LSMV 132 M   | 216 | 250 | 178 | 208 | 89  | 15 | 50  | 12   | 15      | 132      | 265      | 318 | 385   | 25    | 160 | 55  | 55   | 140 | 45  |
| LSMV 132 MU  | 216 | 250 | 178 | 208 | 89  | 15 | 50  | 12   | 15      | 132      | 265      | 318 | 412   | 25    | 160 | 55  | 55   | 140 | 45  |
| LSMV 160 MP  | 254 | 294 | 210 | 294 | 108 | 20 | 64  | 14   | 25      | 160      | 264      | 346 | 468   | 66,5  | 160 | 55  | 55   | 155 | 45  |
| LSMV 160 MR  | 254 | 294 | 210 | 294 | 108 | 20 | 64  | 14   | 25      | 160      | 264      | 346 | 495   | 66,5  | 160 | 55  | 55   | 155 | 45  |
| LSMV 160 LUR | 254 | 294 | 254 | 294 | 108 | 20 | 60  | 14,5 | 25      | 160      | 312      | 395 | 510   | 42,75 | 135 | 88  | 64   | -   | -   |
| LSMV 180 M   | 279 | 339 | 241 | 329 | 121 | 25 | 86  | 14,5 | 25      | 180      | 350      | 456 | 546   | 94,5  | 186 | 112 | 98   | -   | -   |
| LSMV 180 LUR | 279 | 339 | 279 | 329 | 121 | 25 | 86  | 14,5 | 25      | 180      | 350      | 436 | 614   | 63,5  | 186 | 112 | 98   | -   | -   |
| LSMV 200 L   | 318 | 388 | 305 | 375 | 133 | 35 | 103 | 18,5 | 36      | 200      | 390      | 476 | 621   | 77    | 186 | 112 | 98   | -   | -   |
| LSMV 225 SR  | 356 | 431 | 286 | 386 | 149 | 50 | 127 | 18,5 | 36      | 225      | 390      | 535 | 675,5 | 61    | 231 | 119 | 142  | -   | -   |
| LSMV 225 MG  | 356 | 420 | 311 | 375 | 149 | 30 | 65  | 18,5 | 30      | 225      | 479      | 631 | 803,5 | 61    | 292 | 151 | 181  | -   | -   |
| LSMV 250 ME  | 406 | 470 | 349 | 420 | 168 | 35 | 90  | 24   | 36      | 250      | 479      | 656 | 810   | 67,5  | 292 | 151 | 181  | -   | -   |
| LSMV 280 SD  | 457 | 520 | 368 | 478 | 190 | 35 | 90  | 24   | 35      | 280      | 479      | 686 | 870   | 67,5  | 292 | 151 | 181  | -   | -   |
| LSMV 280 MK  | 457 | 533 | 419 | 495 | 190 | 40 | 85  | 24   | 35      | 280      | 586      | 765 | 921   | 98,5  | 292 | 151 | 181  | -   | -   |
| LSMV 315 SP  | 508 | 594 | 406 | 537 | 216 | 40 | 114 | 28   | 70      | 315      | 586      | 867 | 947   | 61,5  | 418 | 180 | 235  | -   | -   |
| LSMV 315 MR  | 508 | 594 | 457 | 537 | 216 | 40 | 114 | 28   | 70      | 315      | 586      | 867 | 1017  | 61,5  | 418 | 180 | 235  | -   | -   |

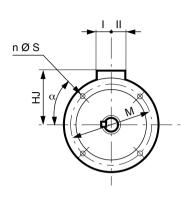
 $<sup>^{\</sup>star}\,$  AC : diamètre carter sans les anneaux de levage

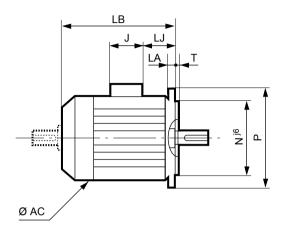
Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Dimensions

## Pattes et bride de fixation à trous lisses IM 2001 (IM B35)






|              | Dimensions principales |     |     |     |     |    |     |      |    |     |     |     |       |       |     |     |     |        |
|--------------|------------------------|-----|-----|-----|-----|----|-----|------|----|-----|-----|-----|-------|-------|-----|-----|-----|--------|
| Туре         | Α                      | AB  | В   | BB  | С   | X  | AA  | K    | HA | Н   | AC* | HD  | LB    | LJ    | J   | ı   | II  | Symb   |
| LSMV 80 L    | 125                    | 157 | 100 | 120 | 50  | 10 | 29  | 9    | 10 | 80  | 170 | 221 | 212   | 14,5  | 160 | 55  | 55  | FF 165 |
| LSMV 80 LG   | 125                    | 157 | 100 | 125 | 70  | 14 | 31  | 9    | 10 | 80  | 185 | 237 | 262   | 34,5  | 160 | 55  | 55  | FF 165 |
| LSMV 90 S    | 140                    | 172 | 100 | 120 | 76  | 10 | 37  | 10   | 11 | 90  | 190 | 241 | 232   | 33,5  | 160 | 55  | 55  | FF 165 |
| LSMV 90 SL   | 140                    | 172 | 125 | 162 | 76  | 28 | 39  | 10   | 11 | 90  | 190 | 241 | 259   | 33,5  | 160 | 55  | 55  | FF 165 |
| LSMV 90 L    | 140                    | 172 | 125 | 162 | 76  | 28 | 39  | 10   | 11 | 90  | 190 | 241 | 259   | 33,5  | 160 | 55  | 55  | FF 165 |
| LSMV 90 LU   | 140                    | 172 | 125 | 162 | 76  | 28 | 39  | 10   | 11 | 90  | 190 | 241 | 285   | 33,5  | 160 | 55  | 55  | FF 165 |
| LSMV 100 L   | 160                    | 196 | 140 | 165 | 63  | 12 | 40  | 12   | 13 | 100 | 200 | 256 | 288   | 14,5  | 160 | 55  | 55  | FF 215 |
| LSMV 100 LR  | 160                    | 196 | 140 | 165 | 63  | 12 | 40  | 12   | 13 | 100 | 200 | 262 | 307   | 14,5  | 160 | 55  | 55  | FF 215 |
| LSMV 100 LG  | 160                    | 196 | 140 | 170 | 63  | 11 | 49  | 12   | 13 | 100 | 230 | 265 | 305   | 13,5  | 160 | 55  | 55  | FF 215 |
| LSMV 112 MR  | 190                    | 220 | 140 | 165 | 70  | 13 | 45  | 12   | 14 | 112 | 200 | 268 | 314   | 14,5  | 160 | 55  | 55  | FF 215 |
| LSMV 112 MG  | 190                    | 220 | 140 | 165 | 69  | 12 | 52  | 12   | 14 | 112 | 235 | 277 | 305   | 23,5  | 160 | 55  | 55  | FF 215 |
| LSMV 112 MU  | 190                    | 220 | 140 | 165 | 70  | 12 | 52  | 12   | 14 | 112 | 235 | 277 | 333   | 23,5  | 160 | 55  | 55  | FF 215 |
| LSMV 132 S   | 216                    | 250 | 140 | 170 | 89  | 16 | 42  | 12   | 16 | 132 | 220 | 300 | 350   | 40,5  | 160 | 55  | 55  | FF 265 |
| LSMV 132 SU  | 216                    | 250 | 140 | 170 | 89  | 16 | 42  | 12   | 16 | 132 | 220 | 300 | 377   | 40,5  | 160 | 55  | 55  | FF 265 |
| LSMV 132 SM  | 216                    | 250 | 178 | 208 | 89  | 15 | 50  | 12   | 15 | 132 | 265 | 318 | 410   | 50    | 160 | 55  | 55  | FF 265 |
| LSMV 132 M   | 216                    | 250 | 178 | 208 | 89  | 15 | 50  | 12   | 15 | 132 | 265 | 318 | 385   | 25    | 160 | 55  | 55  | FF 265 |
| LSMV 132 MU  | 216                    | 250 | 178 | 208 | 89  | 15 | 50  | 12   | 15 | 132 | 265 | 318 | 412   | 25    | 160 | 55  | 55  | FF 265 |
| LSMV 160 MP  | 254                    | 294 | 210 | 294 | 108 | 20 | 64  | 14   | 25 | 160 | 264 | 346 | 468   | 66,5  | 160 | 55  | 55  | FF 300 |
| LSMV 160 MR  | 254                    | 294 | 210 | 294 | 108 | 20 | 64  | 14   | 25 | 160 | 264 | 346 | 495   | 66,5  | 160 | 55  | 55  | FF 300 |
| LSMV 160 LUR | 254                    | 294 | 254 | 294 | 108 | 20 | 60  | 14,5 | 25 | 160 | 312 | 395 | 510   | 42,75 | 135 | 88  | 64  | FF 300 |
| LSMV 180 M   | 279                    | 339 | 241 | 329 | 121 | 25 | 86  | 14,5 | 25 | 180 | 350 | 456 | 546   | 94,5  | 186 | 112 | 98  | FF 300 |
| LSMV 180 LUR | 279                    | 339 | 279 | 329 | 121 | 25 | 86  | 14,5 | 25 | 180 | 350 | 436 | 614   | 63,5  | 186 | 112 | 98  | FF 300 |
| LSMV 200 L   | 318                    | 388 | 305 | 375 | 133 | 35 | 103 | 18,5 | 36 | 200 | 390 | 476 | 621   | 77    | 186 | 112 | 98  | FF 350 |
| LSMV 225 SR  | 356                    | 431 | 286 | 386 | 149 | 50 | 127 | 18,5 | 36 | 225 | 390 | 535 | 675,5 | 61    | 231 | 119 | 142 | FF 400 |
| LSMV 225 MG  | 356                    | 420 | 311 | 375 | 149 | 30 | 65  | 18,5 | 30 | 225 | 479 | 631 | 803,5 | 61    | 292 | 151 | 181 | FF 400 |
| LSMV 250 ME  | 406                    | 470 | 349 | 420 | 168 | 35 | 90  | 24   | 36 | 250 | 479 | 656 | 810   | 67,5  | 292 | 151 | 181 | FF 500 |
| LSMV 280 SD  | 457                    | 520 | 368 | 478 | 168 | 35 | 90  | 24   | 35 | 280 | 479 | 686 | 870   | 67,5  | 292 | 151 | 181 | FF 500 |
| LSMV 280 MK  | 457                    | 533 | 419 | 495 | 190 | 40 | 85  | 24   | 35 | 280 | 586 | 765 | 921   | 98,5  | 292 | 151 | 181 | FF 500 |
| LSMV 315 SP  | 508                    | 594 | 406 | 537 | 216 | 40 | 114 | 28   | 70 | 315 | 586 | 867 | 947   | 61,5  | 418 | 180 | 235 | FF 600 |
| LSMV 315 MR  | 508                    | 594 | 457 | 537 | 216 | 40 | 114 | 28   | 70 | 315 | 586 | 867 | 1017  | 61,5  | 418 | 180 | 235 | FF 600 |


<sup>\*</sup> AC : diamètre carter sans les anneaux de levage

Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Dimensions

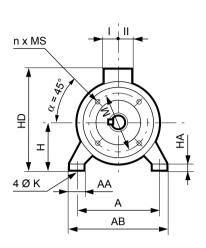
## Bride de fixation à trous lisses IM 3001 (IM B5) IM 3011 (IM V1)

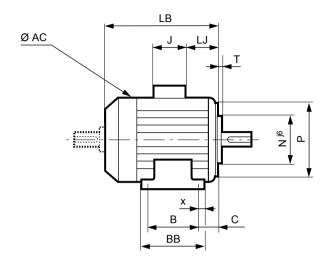
Dimensions en millimètres





| Symbole |     |     |     | Cotes de | s bride | s    |      |    |
|---------|-----|-----|-----|----------|---------|------|------|----|
| CEI     | M   | N   | Р   | T        | n       | α°   | S    | LA |
| FF 165  | 165 | 130 | 200 | 3,5      | 4       | 45   | 12   | 10 |
| FF 165  | 165 | 130 | 200 | 3,5      | 4       | 45   | 12   | 10 |
| FF 165  | 165 | 130 | 200 | 3,5      | 4       | 45   | 12   | 10 |
| FF 165  | 165 | 130 | 200 | 3,5      | 4       | 45   | 12   | 10 |
| FF 165  | 165 | 130 | 200 | 3,5      | 4       | 45   | 12   | 10 |
| FF 165  | 165 | 130 | 200 | 3,5      | 4       | 45   | 12   | 10 |
| FF 215  | 215 | 180 | 250 | 4        | 4       | 45   | 14,5 | 12 |
| FF 215  | 215 | 180 | 250 | 4        | 4       | 45   | 14,5 | 12 |
| FF 215  | 215 | 180 | 250 | 4        | 4       | 45   | 14,5 | 12 |
| FF 215  | 215 | 180 | 250 | 4        | 4       | 45   | 14,5 | 11 |
| FF 215  | 215 | 180 | 250 | 4        | 4       | 45   | 14,5 | 11 |
| FF 215  | 215 | 180 | 250 | 4        | 4       | 45   | 14,5 | 11 |
| FF 265  | 265 | 230 | 300 | 4        | 4       | 45   | 14,5 | 12 |
| FF 265  | 265 | 230 | 300 | 4        | 4       | 45   | 14,5 | 12 |
| FF 265  | 265 | 230 | 300 | 4        | 4       | 45   | 14,5 | 12 |
| FF 265  | 265 | 230 | 300 | 4        | 4       | 45   | 14,5 | 12 |
| FF 265  | 265 | 230 | 300 | 4        | 4       | 45   | 14,5 | 12 |
| FF 300  | 300 | 250 | 350 | 5        | 4       | 45   | 18,5 | 14 |
| FF 300  | 300 | 250 | 350 | 5        | 4       | 45   | 18,5 | 14 |
| FF 300  | 300 | 250 | 350 | 5        | 4       | 45   | 18,5 | 14 |
| FF 300  | 300 | 250 | 350 | 5        | 4       | 45   | 18,5 | 14 |
| FF 300  | 300 | 250 | 350 | 5        | 4       | 45   | 18,5 | 14 |
| FF 350  | 350 | 300 | 400 | 5        | 4       | 45   | 18,5 | 15 |
| FF 400  | 400 | 350 | 450 | 5        | 8       | 22,5 | 18,5 | 16 |
| FF 400  | 400 | 350 | 450 | 5        | 8       | 22,5 | 18,5 | 16 |
| FF 500  | 500 | 450 | 550 | 5        | 8       | 22,5 | 18,5 | 18 |
| FF 500  | 500 | 450 | 550 | 5        | 8       | 22,5 | 18,5 | 18 |
| FF 500  | 500 | 450 | 550 | 5        | 8       | 22,5 | 18,5 | 18 |
| FF 600  | 600 | 550 | 660 | 6        | 8       | 22,5 | 24   | 22 |
| FF 600  | 600 | 550 | 660 | 6        | 8       | 22,5 | 24   | 22 |
| FF 000  | 000 | 550 |     | - 0      | 0       | 22,3 |      | 22 |


| _            |     |       | Dimens | ions prin | cipales |     |     |
|--------------|-----|-------|--------|-----------|---------|-----|-----|
| Туре         | AC* | LB    | HJ     | LJ        | J       | ı   | II  |
| LSMV 80 L    | 170 | 212   | 141    | 14,5      | 160     | 55  | 55  |
| LSMV 80 LG   | 185 | 263   | 151    | 34,5      | 160     | 55  | 55  |
| LSMV 90 S    | 190 | 232   | 151    | 33,5      | 160     | 55  | 55  |
| LSMV 90 SL   | 190 | 259   | 151    | 33,5      | 160     | 55  | 55  |
| LSMV 90 L    | 190 | 259   | 151    | 33,5      | 160     | 55  | 55  |
| LSMV 90 LU   | 190 | 285   | 151    | 33,5      | 160     | 55  | 55  |
| LSMV 100 L   | 200 | 288   | 156    | 14,5      | 160     | 55  | 55  |
| LSMV 100 LR  | 200 | 314   | 156    | 14,5      | 160     | 55  | 55  |
| LSMV 100 LG  | 230 | 305   | 165    | 13,5      | 160     | 55  | 55  |
| LSMV 112 MR  | 200 | 314   | 156    | 14,5      | 160     | 55  | 55  |
| LSMV 112 MG  | 235 | 305   | 165    | 23,5      | 160     | 55  | 55  |
| LSMV 112 MU  | 235 | 333   | 165    | 23,5      | 160     | 55  | 55  |
| LSMV 132 S   | 220 | 350   | 168    | 40,5      | 160     | 55  | 55  |
| LSMV 132 SU  | 220 | 377   | 168    | 40,5      | 160     | 55  | 55  |
| LSMV 132 SM  | 265 | 410   | 186    | 50        | 160     | 55  | 55  |
| LSMV 132 M   | 265 | 385   | 186    | 25        | 160     | 55  | 55  |
| LSMV 132 MU  | 265 | 412   | 186    | 25        | 160     | 55  | 55  |
| LSMV 160 MP  | 264 | 468   | 186    | 66,5      | 160     | 55  | 55  |
| LSMV 160 MR  | 264 | 495   | 186    | 66,5      | 160     | 55  | 55  |
| LSMV 160 LUR | 312 | 510   | 235    | 42,75     | 135     | 88  | 64  |
| LSMV 180 M   | 350 | 546   | 276    | 94,5      | 186     | 112 | 98  |
| LSMV 180 LUR | 350 | 614   | 256    | 63,5      | 186     | 112 | 98  |
| LSMV 200 L   | 390 | 621   | 276    | 77        | 186     | 112 | 98  |
| LSMV 225 SR  | 390 | 675,5 | 310    | 61        | 231     | 119 | 142 |
| LSMV 225 MG  | 479 | 803,5 | 406    | 61        | 292     | 151 | 181 |
| LSMV 250 ME  | 479 | 810   | 406    | 67,5      | 292     | 151 | 181 |
| LSMV 280 SD  | 479 | 870   | 406    | 67,5      | 292     | 151 | 181 |
| LSMV 280 MK  | 586 | 921   | 466    | 98,5      | 292     | 151 | 181 |
| LSMV 315 SP  | 586 | 947   | 555    | 61,5      | 418     | 180 | 235 |
| LSMV 315 MR  | 586 | 1017  | 555    | 61,5      | 418     | 180 | 235 |

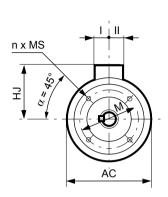

La forme des moteurs à bride de fixation FF en IM 3001 s'arrête à la hauteur d'axe 225. Côtes des bouts d'arbre identiques à la forme des moteurs à pattes de fixation.

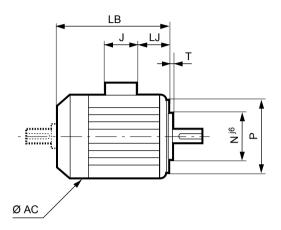
<sup>\*</sup> AC : diamètre carter sans les anneaux de levage

Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Dimensions

# Pattes et bride de fixation à trous taraudés IM 2101 (IM B34)







|             | Dimensions principales |     |     |     |     |    |    |    |    |     |     |     |     |      |     |    |    |        |
|-------------|------------------------|-----|-----|-----|-----|----|----|----|----|-----|-----|-----|-----|------|-----|----|----|--------|
| Туре        | Α                      | AB  | В   | BB  | С   | х  | AA | K  | HA | Н   | AC* | HD  | LB  | LJ   | J   | ı  | II | Symb   |
| LSMV 80 L   | 125                    | 157 | 100 | 120 | 50  | 10 | 29 | 9  | 10 | 80  | 170 | 221 | 212 | 13,5 | 160 | 55 | 55 | FT 100 |
| LSMV 80 LG  | 125                    | 157 | 100 | 125 | 50  | 14 | 31 | 9  | 10 | 80  | 185 | 231 | 243 | 13,5 | 160 | 55 | 55 | FT 100 |
| LSMV 90 S   | 140                    | 172 | 100 | 120 | 56  | 10 | 37 | 10 | 11 | 90  | 190 | 241 | 212 | 13,5 | 160 | 55 | 55 | FT 115 |
| LSMV 90 SL  | 140                    | 172 | 125 | 162 | 56  | 28 | 39 | 10 | 11 | 90  | 190 | 241 | 239 | 13,5 | 160 | 55 | 55 | FT 115 |
| LSMV 90 L   | 140                    | 172 | 125 | 162 | 56  | 28 | 39 | 10 | 11 | 90  | 190 | 241 | 239 | 13,5 | 160 | 55 | 55 | FT 115 |
| LSMV 90 LU  | 140                    | 172 | 125 | 162 | 56  | 28 | 39 | 10 | 11 | 90  | 190 | 241 | 265 | 13,5 | 160 | 55 | 55 | FT 115 |
| LSMV 100 L  | 160                    | 196 | 140 | 165 | 63  | 12 | 40 | 12 | 13 | 100 | 200 | 256 | 288 | 14,5 | 160 | 55 | 55 | FT 130 |
| LSMV 100 LR | 160                    | 196 | 140 | 165 | 63  | 12 | 40 | 12 | 13 | 100 | 200 | 256 | 314 | 14,5 | 160 | 55 | 55 | FT 130 |
| LSMV 100 LG | 160                    | 196 | 140 | 170 | 63  | 11 | 49 | 12 | 13 | 100 | 230 | 265 | 305 | 23,5 | 160 | 55 | 55 | FT 130 |
| LSMV 112 MR | 190                    | 220 | 140 | 165 | 70  | 13 | 45 | 12 | 14 | 112 | 200 | 268 | 314 | 14,5 | 160 | 55 | 55 | FT 130 |
| LSMV 112 MG | 190                    | 220 | 140 | 165 | 70  | 12 | 52 | 12 | 14 | 112 | 235 | 277 | 305 | 23,5 | 160 | 55 | 55 | FT 130 |
| LSMV 112 MU | 190                    | 220 | 140 | 165 | 70  | 12 | 52 | 12 | 14 | 112 | 235 | 277 | 333 | 23,5 | 160 | 55 | 55 | FT 130 |
| LSMV 132 S  | 216                    | 250 | 140 | 170 | 89  | 16 | 42 | 12 | 16 | 132 | 220 | 300 | 350 | 40,5 | 160 | 55 | 55 | FT 215 |
| LSMV 132 SU | 216                    | 250 | 140 | 170 | 89  | 16 | 42 | 12 | 16 | 132 | 220 | 300 | 377 | 40,5 | 160 | 55 | 55 | FT 215 |
| LSMV 132 SM | 216                    | 250 | 178 | 208 | 89  | 15 | 50 | 12 | 15 | 132 | 265 | 318 | 410 | 50   | 160 | 55 | 55 | FT 215 |
| LSMV 132 M  | 216                    | 250 | 178 | 208 | 89  | 15 | 50 | 12 | 15 | 132 | 265 | 318 | 385 | 25   | 160 | 55 | 55 | FT 215 |
| LSMV 132 MU | 216                    | 250 | 178 | 208 | 89  | 15 | 50 | 12 | 15 | 132 | 265 | 318 | 412 | 25   | 160 | 55 | 55 | FT 215 |
| LSMV 160 MP | 254                    | 294 | 210 | 294 | 108 | 20 | 64 | 14 | 25 | 160 | 264 | 346 | 468 | 66,5 | 160 | 55 | 55 | FT 265 |
| LSMV 160 MR | 254                    | 294 | 210 | 294 | 108 | 20 | 64 | 14 | 25 | 160 | 264 | 346 | 495 | 66,5 | 160 | 55 | 55 | FT 265 |

<sup>\*</sup> AC : diamètre carter sans les anneaux de levage

Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Dimensions

# Bride de fixation à trous taraudés IM 3601 (IM B14)





| Symbole |     |     | Cotes de | s brides |   |     |
|---------|-----|-----|----------|----------|---|-----|
| CÉI     | M   | N   | P        | Т        | n | MS  |
| FT 100  | 100 | 80  | 120      | 3        | 4 | M6  |
| FT 100  | 100 | 80  | 120      | 3        | 4 | M6  |
| FT 115  | 115 | 95  | 140      | 3        | 4 | M8  |
| FT 115  | 115 | 95  | 140      | 3        | 4 | M8  |
| FT 115  | 115 | 95  | 140      | 3        | 4 | M8  |
| FT 115  | 115 | 95  | 140      | 3        | 4 | M8  |
| FT 130  | 130 | 110 | 160      | 3,5      | 4 | M8  |
| FT 130  | 130 | 110 | 160      | 3,5      | 4 | M8  |
| FT 130  | 130 | 110 | 160      | 3,5      | 4 | M8  |
| FT 130  | 130 | 110 | 160      | 3,5      | 4 | M8  |
| FT 130  | 130 | 110 | 160      | 3,5      | 4 | M8  |
| FT 130  | 130 | 110 | 160      | 3,5      | 4 | M8  |
| FT 215  | 215 | 180 | 250      | 4        | 4 | M12 |
| FT 215  | 215 | 180 | 250      | 4        | 4 | M12 |
| FT 215  | 215 | 180 | 250      | 4        | 4 | M12 |
| FT 215  | 215 | 180 | 250      | 4        | 4 | M12 |
| FT 215  | 215 | 180 | 250      | 4        | 4 | M12 |
| FT 215  | 215 | 180 | 250      | 4        | 4 | M12 |
| FT 215  | 215 | 180 | 250      | 4        | 4 | M12 |

| _           |     |     | Dimens | sions prin | cipales |    |    |
|-------------|-----|-----|--------|------------|---------|----|----|
| Туре        | AC* | LB  | HJ     | LJ         | J       | I  | II |
| LSMV 80 L   | 170 | 212 | 141    | 13,5       | 160     | 55 | 55 |
| LSMV 80 LG  | 185 | 243 | 151    | 13,5       | 160     | 55 | 55 |
| LSMV 90 S   | 190 | 212 | 151    | 13,5       | 160     | 55 | 55 |
| LSMV 90 SL  | 190 | 239 | 151    | 13,5       | 160     | 55 | 55 |
| LSMV 90 L   | 190 | 239 | 151    | 13,5       | 160     | 55 | 55 |
| LSMV 90 LU  | 190 | 265 | 151    | 13,5       | 160     | 55 | 55 |
| LSMV 100 L  | 200 | 288 | 156    | 14,5       | 160     | 55 | 55 |
| LSMV 100 LR | 200 | 314 | 156    | 14,5       | 160     | 55 | 55 |
| LSMV 100 LG | 230 | 305 | 165    | 23,5       | 160     | 55 | 55 |
| LSMV 112 MR | 200 | 314 | 156    | 14,5       | 160     | 55 | 55 |
| LSMV 112 MG | 235 | 305 | 165    | 23,5       | 160     | 55 | 55 |
| LSMV 112 MU | 235 | 333 | 165    | 23,5       | 160     | 55 | 55 |
| LSMV 132 S  | 220 | 350 | 168    | 40,5       | 160     | 55 | 55 |
| LSMV 132 SU | 220 | 377 | 168    | 40,5       | 160     | 55 | 55 |
| LSMV 132 SM | 265 | 410 | 186    | 50         | 160     | 55 | 55 |
| LSMV 132 M  | 265 | 385 | 186    | 25         | 160     | 55 | 55 |
| LSMV 132 MU | 265 | 412 | 186    | 25         | 160     | 55 | 55 |
| LSMV 160 MP | 264 | 468 | 186    | 66,5       | 160     | 55 | 55 |
| LSMV 160 MR | 264 | 495 | 186    | 66,5       | 160     | 55 | 55 |

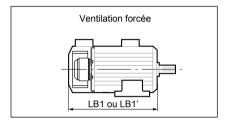
<sup>\*</sup> AC : diamètre carter sans les anneaux de levage

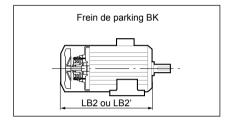
Moteurs asynchrones triphasés à haut rendement pour variation de vitesse

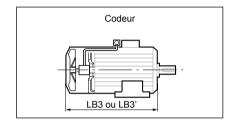
**Dimensions** 

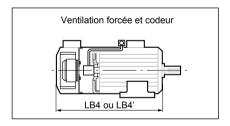
## **Encombrement des options**

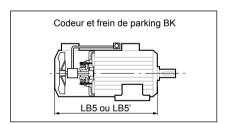
# MOTEURS LSMV AVEC OPTIONS

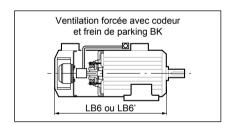

L'intégration des moteurs LSMV au sein de process, nécessite parfois l'équipement des moteurs en accessoires qui en faciliteront l'utilisation :


- les ventilations forcées pour l'utilisation des moteurs en basse vitesse ou vitesse élevée.


- les freins de parking pour maintenir le rotor en position d'arrêt sans qu'il soit nécessaire de laisser le moteur sous tension.
- les freins d'arrêt d'urgence pour immobiliser des charges en cas de défaillance du contrôle de couple moteur ou de coupure du réseau d'alimentation.
- le codeur qui, fournissant une information numérique permet d'affiner


l'asservissement en vitesse et positionnement.


L'ensemble de ces options peut être combiné comme l'indique le tableau ci-contre.














Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Dimensions

## **Encombrement des options**

Dimensions en millimètres

## MOTEURS À PATTES OU À BRIDE (FT)

|              |      |     | Dimensions | principales |     |     |
|--------------|------|-----|------------|-------------|-----|-----|
| Туре         | LB1  | LB2 | LB3        | LB4         | LB5 | LB6 |
| LSMV 80 L    | 317  | 254 | 296        | 352         | 362 | 419 |
| LSMV 80 LG   | 322  | 304 | 330        | 385         | 389 | 446 |
| LSMV 90 S    | 304  | 279 | 302        | 357         | 352 | 389 |
| LSMV 90 SL   | 331  | 304 | 329        | 384         | 379 | 416 |
| LSMV 90 L    | 331  | 304 | 329        | 384         | 379 | 416 |
| LSMV 90 LU   | 342  | 326 | 352        | 402         | 379 | 416 |
| LSMV 100 L   | 373  | 358 | 376        | 430         | 444 | 499 |
| LSMV 100 LR  | 381  | 365 | 386        | 431         | 443 | 488 |
| LSMV 100 LG  | 411  | 405 | 394        | 455         | 479 | 518 |
| LSMV 112 MR  | 407  | 380 | 391        | 438         | 459 | 497 |
| LSMV 112 MG  | 412  | 385 | 396        | 443         | 464 | 502 |
| LSMV 112 MU  | 426  | 402 | 419        | 466         | 464 | 502 |
| LSMV 132 S   | 453  | 426 | 437        | 484         | 505 | 543 |
| LSMV 132 SU  | 453  | 426 | 437        | 484         | 505 | 543 |
| LSMV 132 SM  | 458  | 487 | 454        | 499         | 540 | 578 |
| LSMV 132 M   | 458  | 487 | 454        | 499         | 540 | 578 |
| LSMV 132 MU  | 458  | 511 | 494        | 499         | 540 | 578 |
| LSMV 160 MP  | 709  | 527 | 555        | 709         | 615 | 653 |
| LSMV 160 MR  | 704  | 580 | 576        | 709         | 615 | 653 |
| LSMV 160 LUR | 702  | -   | 574        | 702         | -   | -   |
| LSMV 180 M   | 735  | -   | 596        | 735         | -   | -   |
| LSMV 180 LUR | 769  | -   | 629        | 769         | -   | -   |
| LSMV 200 L   | 802  | -   | 674        | 802         | -   | -   |
| LSMV 225 SR  | 854  | -   | 730        | 854         | -   | -   |
| LSMV 225 MG  | 1006 | -   | 854        | 1006        | -   | -   |
| LSMV 250 ME  | 1012 | -   | 860        | 1012        | -   | -   |
| LSMV 280 SD  | 1072 | -   | 920        | 1072        | -   | -   |
| LSMV 280 MK  | 1111 | -   | 965        | 1111        | -   | -   |
| LSMV 315 SP  | 1181 | -   | 991        | 1181        | -   | -   |
| LSMV 315 MR  | 1251 | -   | 1061       | 1251        | -   | -   |

## MOTEURS À BRIDE (FF) OU À PATTES ET BRIDE (FF)

|              |      |      | Dimensions | principales |      |      |
|--------------|------|------|------------|-------------|------|------|
| Туре         | LB1' | LB2' | LB3'       | LB4'        | LB5' | LB6' |
| LSMV 80 L    | 317  | 254  | 296        | 352         | 362  | 419  |
| LSMV 80 LG   | 342  | 324  | 350        | 405         | 409  | 466  |
| LSMV 90 S    | 324  | 299  | 322        | 377         | 372  | 409  |
| LSMV 90 SL   | 351  | 324  | 349        | 404         | 399  | 436  |
| _SMV 90 L    | 351  | 324  | 349        | 404         | 399  | 436  |
| _SMV 90 LU   | 362  | 346  | 372        | 422         | 399  | 436  |
| SMV 100 L    | 373  | 358  | 376        | 430         | 444  | 499  |
| _SMV 100 LR  | 381  | 365  | 386        | 431         | 443  | 488  |
| _SMV 100 LG  | 401  | 395  | 384        | 445         | 469  | 508  |
| -SMV 112 MR  | 407  | 380  | 391        | 438         | 459  | 497  |
| -SMV 112 MG  | 412  | 385  | 396        | 443         | 464  | 502  |
| _SMV 112 MU  | 426  | 402  | 419        | 466         | 464  | 502  |
| -SMV 132 S   | 453  | 426  | 437        | 484         | 505  | 543  |
| -SMV 132 SU  | 453  | 426  | 437        | 484         | 505  | 543  |
| -SMV 132 SM  | 458  | 487  | 454        | 499         | 540  | 578  |
| -SMV 132 M   | 458  | 487  | 454        | 499         | 540  | 578  |
| -SMV 132 MU  | 458  | 511  | 494        | 499         | 540  | 578  |
| SMV 160 MP   | 709  | 527  | 555        | 709         | 615  | 653  |
| -SMV 160 MR  | 704  | 580  | 576        | 709         | 615  | 653  |
| SMV 160 LUR  | 702  | -    | 574        | 702         | -    | -    |
| -SMV 180 M   | 735  | -    | 596        | 735         | -    | _    |
| LSMV 180 LUR | 769  | -    | 629        | 769         | -    | _    |
| -SMV 200 L   | 802  | -    | 674        | 802         | -    | -    |
| _SMV 225 SR  | 854  | -    | 730        | 854         | -    | -    |
| _SMV 225 MG  | 1006 |      | 854        | 1006        |      | -    |
| -SMV 250 ME  | 1012 | -    | 860        | 1012        | -    | -    |
| _SMV 280 SD  | 1072 | -    | 920        | 1072        | -    | -    |
| _SMV 280 MK  | 1111 |      | 965        | 1111        |      | -    |
| _SMV 315 SP  | 1181 | -    | 991        | 1181        | -    | -    |
| LSMV 315 MR  | 1251 | -    | 1061       | 1251        | -    | -    |

Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Construction

## **Peinture**

Les moteurs Leroy-Somer sont protégés contre les agressions de l'environnement. Des préparations adaptées à chaque support permettent de rendre la protection homogène.

#### Préparation des supports

| SUPPORTS            | PIECES                    | TRAITEMENT DES SUPPORTS                   |
|---------------------|---------------------------|-------------------------------------------|
| Fonte               | Paliers                   | Grenaillage + Couche primaire d'attente   |
| Acier               | Accessoires               | Phosphatation + Couche primaire d'attente |
| Aciei               | Boîtes à bornes - Capots  | Poudre Cataphorèse ou Epoxy               |
| Alliage d'aluminium | Carters - Boîtes à bornes | Grenaillage                               |

## **DÉFINITION DES AMBIANCES**

Une ambiance est dite agressive lorsque l'attaque des composants est faite par des bases, des acides ou des sels. Elle est dite corrosive lorsque l'attaque est faite par l'oxygène.

#### Mise en peinture - Les systèmes

| AMBIANCE                                                                                                                                                       | SYSTEME             | APPLICATIONS                                                                                                                 | CATEGORIE*<br>DE CORROSIVITE<br>SELON ISO 12944-2 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Peu et non agressive (intérieure, rurale, industrielle)                                                                                                        | Ia<br>Standard LSMV | 1 couche finition polyuréthane 20/30 μm                                                                                      | C3L                                               |
| Moyennement corrosive : humide, et extérieur (climat tempéré)                                                                                                  | Ha                  | 1 couche apprêt Epoxy 30/40 μm<br>1 couche finition polyuréthane 20/30 μm                                                    | СЗМ                                               |
| Corrosive : bord de mer,<br>très humide (climat tropical)                                                                                                      | IIIa                | 1 couche apprêt Epoxy 30/40 μm<br>1 couche intermédiaire Epoxy 30/40 μm<br>1 couche finition polyuréthane 20/30 μm           | C4M                                               |
| Agression chimique importante : contact fréquent avec bases, acides, alcalins environnement - ambiance neutre (non au contact de produits chlorés ou souffrés) | IIIb**              | 1 couche apprêt Epoxy 30/40 μm<br>1 couche intermédiaire Epoxy 30/40 μm<br>1 couche finition Epoxy 25/35 μm                  | С4Н                                               |
| Ambiance particulière. Très agressive, présence<br>de produits chlorés ou souffrés                                                                             | Ve**                | 1 couche apprêt Epoxy 20/30 μm<br>2 couches intermédiaires Epoxy 35/40 μm chacune<br>1 couche finition polyuréthane 35/40 μm | C5I-M                                             |
| ae produits cinores ou soumes                                                                                                                                  | 161b**              | 1 couche apprêt 50 μm<br>2 couches intermédiaires Epoxy 80 μm<br>1 couche finition Epoxy 50 μm                               | С5М-М                                             |

Le système Ia s'applique au groupement de climats modérés et le système IIa au groupement de climats généraux, au titre de la norme CEI 60721.2.1.

Référence de couleur de la peinture standard Leroy-Somer pour les moteurs LSMV :

**RAL 9005** 

<sup>\*</sup> Valeurs communiquées à titre indicatif car les supports sont de nature différentes alors que la norme ne prend en compte que le support acier.

<sup>\* \*</sup> Évaluation du degré d'enrouillement selon la norme ISO 4628 (aire rouillée entre 1 et 0,5%)

Moteurs asynchrones triphasés à haut rendement pour variation de vitesse

Construction

## Définition des indices de protection (IP/IK)

Les moteurs LSMV sont en configuration standard IP 55

Indices de protection des enveloppes des matériels électriques Selon norme CEI 60034-5 - EN 60034-5 (IP) - CEI 62262 (IK)

| 1 <sup>er</sup> chiffre                                                                                                                                                                                                                      | e :<br>n contre les corp                               | s solides                                                                                                        | 2 <sup>e</sup> chiffre : protection of | contre les liquides                                        |                                                                                 |    | chiffre :<br>otection mécanique |                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------|----|---------------------------------|-----------------------------|
| IP                                                                                                                                                                                                                                           | Tests                                                  | Définition                                                                                                       | IP                                     | Tests                                                      | Définition                                                                      | IK | Tests                           | Définition                  |
| 0                                                                                                                                                                                                                                            |                                                        | Pas de protection                                                                                                | 0                                      |                                                            | Pas de protection                                                               | 00 |                                 | Pas de protection           |
| 1                                                                                                                                                                                                                                            | Ø 50 mm                                                | Protégé contre les<br>corps solides<br>supérieurs à 50 mm<br>(exemple : contacts<br>involontaires<br>de la main) | <b>1</b><br>ර                          |                                                            | Protégé contre les<br>chutes verticales de<br>gouttes d'eau<br>(condensation)   | 01 | 150 g                           | Énergie de choc :<br>0,15 J |
| 2                                                                                                                                                                                                                                            | Ø 12 mm                                                | Protégé contre les<br>corps solides<br>supérieurs à 12 mm<br>(exemple : doigt<br>de la main)                     | 2                                      | ,15°,1                                                     | Protégé contre les<br>chutes de gouttes<br>d'eau jusqu'à 15°<br>de la verticale | 02 | 200 g<br>† 10 cm                | Énergie de choc :<br>0,20 J |
| 3                                                                                                                                                                                                                                            | Ø 2.5 mm                                               | Protégé contre les<br>corps solides<br>supérieurs à 2.5 mm<br>(exemples : outils,<br>fils)                       | <b>3</b>                               | 8                                                          | Protégé contre l'eau<br>en pluie jusqu'à 60°<br>de la verticale                 | 03 | 250 g<br>† 15 cm                | Énergie de choc :<br>0,37 J |
| 4                                                                                                                                                                                                                                            | Ø1 mm                                                  | Protégé contre les<br>corps solides<br>supérieurs à 1 mm<br>(exemples :<br>outils fins, petits fils)             | 4                                      | O                                                          | Protégé contre les<br>projections d'eau<br>de toutes directions                 | 04 | 250 g                           | Énergie de choc :<br>0,50 J |
| 5                                                                                                                                                                                                                                            | 0                                                      | Protégé contre les<br>poussières (pas de<br>dépôt nuisible)                                                      | <b>5</b>                               |                                                            | Protégé contre les<br>jets d'eau de toutes<br>directions à la lance             | 05 | 350 g ± 20 cm                   | Énergie de choc :<br>0,70 J |
| 6                                                                                                                                                                                                                                            | 0                                                      | Protégé<br>contre toute<br>pénétration<br>de poussières.                                                         | 6                                      | 1                                                          | Protégé contre les<br>projections d'eau<br>assimilables aux<br>paquets de mer   | 06 | 250 g                           | Énergie de choc :<br>1 J    |
|                                                                                                                                                                                                                                              |                                                        |                                                                                                                  | <b>7</b><br>۵ ۵                        | 015m                                                       | Protégé contre les<br>effets de l'immersion<br>entre 0,15 et 1 m                | 07 | 0,5 kg 40 cm                    | Énergie de choc :<br>2 J    |
| Exemple:                                                                                                                                                                                                                                     | s d'une machi                                          | ne IP 55                                                                                                         | 8<br>◊◊m                               | m                                                          | Protégé contre les<br>effets prolongés de<br>l'immersion sous<br>pression       | 08 | 1,25 kg 40 cm                   | Énergie de choc :<br>5 J    |
| IP : Indice                                                                                                                                                                                                                                  | de protection                                          |                                                                                                                  | 2,5 kg †                               | <u></u>                                                    |                                                                                 |    |                                 |                             |
| 5. : Machine protégée contre la poussière et contre les contacts accidentels.<br>Sanction de l'essai : pas d'entrée de poussière en quantité nuisible, aucun contact direct avec des pièces en rotation. L'essai aura une durée de 2 heures. |                                                        |                                                                                                                  |                                        |                                                            |                                                                                 |    | 40 cm                           | Énergie de choc :<br>10 J   |
| .5 : Machi<br>d'une<br><i>L'essa</i>                                                                                                                                                                                                         | ne protégée co<br>lance de débit ´<br>ai a une durée d | ntre les projections<br>12,5 l/min sous 0,3<br>le 3 minutes.                                                     | d'eau dans<br>bar à une di             | outes les directions provenant tance de 3 m de la machine. |                                                                                 |    | 5 kg 40 cm                      | Énergie de choc :<br>20 J   |

Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Construction

## Formes de construction et positions de fonctionnement

#### Modes de fixation et positions (selon Norme CEI 60034-7)

#### Moteurs à pattes de fixation

· toutes hauteurs d'axes

#### IM 1001 (IM B3)

- Arbre horizontal
- Pattes au sol

IM 1051 (IM B6)

IM 1061 (IM B7)

- Arbre horizontal

- Arbre horizontal

- Pattes au mur à gauche

vue du bout d'arbre

- Pattes au mur à droite

vue du bout d'arbre



## IM 1071 (IM B8)

- Arbre horizontal
- Pattes en haut



#### IM 1011 (IM V5)

- Arbre vertical vers le bas
- Pattes au mur



#### IM 1031 (IM V6)

- Arbre vertical vers le haut
- Pattes au mur



#### Moteurs à bride (FF) de fixation à trous lisses

· toutes hauteurs d'axes (excepté IM 3001 limité à hauteur d'axe 225 mm)

## IM 3001 (IM B5)

- Arbre horizontal



## IM 2001 (IM B35)

- Arbre horizontal
- Pattes au sol



IM 3011 (IM V1) - Arbre vertical en bas



## IM 2011 (IM V15)

- Arbre vertical en bas
- Pattes au mur



#### IM 3031 (IM V3)

- Arbre vertical en haut



#### IM 2031 (IM V36)

- Arbre vertical en haut
- Pattes au mur



## Moteurs à bride (FT) de fixation à trous taraudés

• toutes hauteurs d'axe ≤ 132 mm

#### IM 3601 (IM B14) Arbre horizontal



## IM 2101 (IM B34)

- Arbre horizontal
- Pattes au sol



#### IM 3611 (IM V18)

- Arbre vertical en bas



#### IM 2111 (IM V58)

- Arbre vertical en bas
- Pattes au mur



#### IM 3631 (IM V19)

- Arbre vertical en haut



## IM 2131 (IM V69)

- Arbre vertical en haut
- Pattes au mur



#### Moteurs sans palier avant

Attention : la protection (IP) plaquée des moteurs IM B9 et IM B15 est assurée lors du montage du moteur par le client

#### IM 9101 (IM B9)

- A tiges filetées de fixation
- Arbre horizontal



#### IM 1201 (IM B15)

- A pattes de fixation
- et tiges filetées - Arbre horizontal



| Hauteur    |         |         |         |         |         | Positions of | le montage |         |         |         |         |         |
|------------|---------|---------|---------|---------|---------|--------------|------------|---------|---------|---------|---------|---------|
| d'axe (mm) | IM 1001 | IM 1051 | IM 1061 | IM 1071 | IM 1011 | IM 1031      | IM 3001    | IM 3011 | IM 3031 | IM 2001 | IM 2011 | IM 2031 |
| ≤ 200      | •       | •       | •       | •       | •       | •            | •          | •       | •       | •       | •       | •       |
| 225 et 250 | •       | •       | •       | •       | •       | •            | •          | •       | •       | •       | •       | •       |
| ≥ 280      | •       | •       | -       | -       | •       |              | -          | •       | •       | •       | •       |         |

<sup>:</sup> positions possibles

: nous consulter en précisant le mode d'accouplement et les charges axiales et radiales éventuelles

Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Construction

## Lubrification

## **ROULEMENTS GRAISSÉS À VIE**

Dans les conditions normales d'utilisation, la durée de vie en heures du lubrifiant est indiquée dans le tableau ci-dessous par des températures ambiantes inférieures à 55°C.

|       |           |          | Types de roulements<br>graissés à vie |           | Durée de vie L <sub>50g</sub> de la graisse en fonction des vitesses de rotation |            |       |                     |            |       |        |            |       |  |  |
|-------|-----------|----------|---------------------------------------|-----------|----------------------------------------------------------------------------------|------------|-------|---------------------|------------|-------|--------|------------|-------|--|--|
|       |           |          | graisse                               | ės a vie  |                                                                                  | 3000 t/min |       |                     | 1500 t/min |       |        | 1000 t/min |       |  |  |
| Série | Туре      | Polarité | N.D.E.                                | D.E.      | 25°C                                                                             | 40°C       | 55°C  | 25°C                | 40°C       | 55°C  | 25°C   | 40°C       | 55°C  |  |  |
|       | 80 L      | 2        | 6203 CN                               | 6204 C3   | ≥40000                                                                           | ≥40000     | 25000 | -                   | -          | -     | -      | -          | -     |  |  |
|       | 80 LG     | 4        | 6204 C3                               | 6205 C3   | -                                                                                | -          | -     | ≥40000              | ≥40000     | 31000 | -      | -          | -     |  |  |
|       | 90 S/SL/L | 2;4;6    | 0204 C3                               | 0205 C3   | ≥40000                                                                           | ≥40000     | 24000 | <sup>2</sup> ≥40000 | ≥40000     | 31000 | ≥40000 | ≥40000     | 34000 |  |  |
|       | 90 LU     | 4        | 6205 C3                               | 6205 C3   | -                                                                                | -          | -     | ≥40000              | ≥40000     | 30000 | -      | -          | -     |  |  |
|       | 100 L     | 2;6      | C205 C2                               | C20C C2   | ≥40000                                                                           | ≥40000     | 22000 | -                   | -          | -     | ≥40000 | ≥40000     | 33000 |  |  |
|       | 100 LR/LG | 4        | 6205 C3                               | 6206 C3   | -                                                                                | -          | -     | ≥40000              | ≥40000     | 30000 | -      | -          | -     |  |  |
|       | 112 MR    | 2        | 0005.00                               | 0000 00   | ≥40000                                                                           | ≥40000     | 22000 | -                   | -          | -     | -      | -          | -     |  |  |
|       | 112 MG    | 6        | 6205 C3                               | 6206 C3   | -                                                                                | -          | -     | -                   | -          | -     | ≥40000 | ≥40000     | 33000 |  |  |
|       | 112 MU    | 4        | 6206 C3                               | 6206 C3   | -                                                                                | -          | -     | ≥40000              | ≥40000     | 30000 | -      | -          | -     |  |  |
|       | 132 S     | 2;6      | C20C C2                               | C200 C2   | :3 ≥40000 ≥40000 19000                                                           |            |       | ≥40000              | ≥40000     | 30000 |        |            |       |  |  |
|       | 132 SU    | 2        | 6206 C3                               | 6208 C3   | ≥40000                                                                           | ≥40000     | 19000 | -                   | -          | -     | -      | -          | -     |  |  |
| I CMV | 132 SM/M  | 2;4;6    | 6207 C3                               | 6308 C3   | ≥40000                                                                           | ≥40000     | 19000 | ≥40000              | ≥40000     | 25000 | ≥40000 | ≥40000     | 30000 |  |  |
| LSMV  | 132 MU    | 4;6      | 6307 C3                               | 6308 C3   | -                                                                                | -          | -     | ≥40000              | ≥40000     | 25000 | ≥40000 | ≥40000     | 30000 |  |  |
|       | 160 MP    | 2        | 6208 C3                               | 6309 C3   | ≥40000                                                                           | 35000      | 18000 | -                   | -          | -     | -      | -          | -     |  |  |
|       | 160 MR/LR | 2;4      | 6308 C3                               | 6309 C3   | ≥40000                                                                           | 35000      | 15000 | ≥40000              | ≥40000     | 24000 | -      | -          | -     |  |  |
|       | 160 L     | 2        | 6210 C3                               | 6309 C3   | ≥40000                                                                           | 30000      | 15000 | -                   | -          | -     | -      | -          | -     |  |  |
|       | 160 LUR   | 4        | 6210 C3                               | 6310 C3   | -                                                                                | -          | -     | ≥40000              | ≥40000     | 25000 | -      | -          | -     |  |  |
|       | 180 M     | 4        | 6212 C3                               | 6310 C3   | -                                                                                | -          | -     | ≥40000              | ≥40000     | 24000 | -      | -          | -     |  |  |
|       | 180 MT    | 2        | 6210 C3                               | 6310 C3   | ≥40000                                                                           | 30000      | 15000 | -                   | -          | -     | -      | -          | -     |  |  |
|       | 180 LUR   | 4        | 6312 C3                               | 6310 C3   | -                                                                                | -          | -     | ≥40000              | ≥40000     | 22000 | -      | -          | -     |  |  |
|       | 200 L     | 2;4      | 6214 C3                               | 6312 C3   | ≥40000                                                                           | 25000      | 12500 | ≥40000              | ≥40000     | 22000 | -      | -          | -     |  |  |
|       | 225 SR    | 4        | 6312 C3                               | 6212.02   | -                                                                                | -          | -     | ≥40000              | ≥40000     | 21000 | -      | -          | -     |  |  |
|       | 225 MT    | 2        | 6214 C3                               | 6313 C3 - | ≥40000                                                                           | 22000      | 11000 | -                   | -          | -     | -      | -          | -     |  |  |
|       | 225 MG    | 4        | 6216 C3                               | 6314 C3   | -                                                                                | -          | -     | 40000               | 40000      | 20000 | -      | -          | -     |  |  |

Nota : sur demande, les moteurs peuvent être équipés d'un ou deux graisseurs selon le type, sauf le 132 S/SU.

## PALIERS À ROULEMENTS AVEC GRAISSEUR

|       |        |          | Types de roulements Quantité pour palier à graisseur de graisse 3000 t/min 1500 t/min 1000 t/min |         |     |      |      |      |         |       |      |      | ,    |      |
|-------|--------|----------|--------------------------------------------------------------------------------------------------|---------|-----|------|------|------|---------|-------|------|------|------|------|
| Série | Туре   | Polarité | N.D.E.                                                                                           | D.E.    | g   | 25°C | 40°C | 55°C | 25°C    | 40°C  | 55°C | 25°C | 40°C | 55°C |
|       | 250 ME | 4        | 6216 C3                                                                                          | 6314 C3 | 0.5 | -    | -    | -    | 22000   | 11000 | 5500 | -    | -    | -    |
|       | 280 SD | 4        | 6218 C3                                                                                          | 6316 C3 | 25  | -    | -    | -    | 20000   | 10000 | 5000 | -    | -    | -    |
| LSMV  | 280 MK | 4        | 6317 C3                                                                                          | 6317 C3 | 40  | -    | -    | -    | 19000   | 9800  | 4900 | -    | -    | -    |
|       | 315 SP | 4        | 6317 C3                                                                                          | 6300 03 | F0  | -    | -    | -    | 15000   | 7500  | 3750 | -    | -    | -    |
|       | 315 MR | 4        | 0317 03                                                                                          | 6320 C3 | 50  | -    | -    | -    | - 15000 | 7500  | 3/30 | -    | -    | -    |

Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Construction

## **Charges axiales**

#### **Moteur horizontal**

Pour une durée de vie L<sub>10h</sub> des roulements à 25 000 heures et 40 000 heures



|       |           |          |                  | Charge axiale admissible (en daN) sur le bout d'arbre principal pour montage standard des roulements  IM B3 / B6 |                  |                  |                  |                          |                  |                  |                  |                  |                  |                  |
|-------|-----------|----------|------------------|------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|--------------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|       |           |          |                  |                                                                                                                  |                  |                  |                  | IM B3<br>IM B5<br>IM B14 | 7 / B8<br>/ B35  |                  |                  |                  |                  |                  |
|       |           |          |                  | 3000                                                                                                             | t/min            |                  |                  | 1500                     | t/min            |                  | 1000 t/min       |                  |                  |                  |
|       |           |          |                  | <b>→</b>                                                                                                         | <b>←</b>         |                  |                  | <b>→</b>                 | <b>←</b>         |                  |                  | <b>→</b>         | ┥                |                  |
| Série | Туре      | Polarité | 25 000<br>heures | 40 000<br>heures                                                                                                 | 25 000<br>heures | 40 000<br>heures | 25 000<br>heures | 40 000<br>heures         | 25 000<br>heures | 40 000<br>heures | 25 000<br>heures | 40 000<br>heures | 25 000<br>heures | 40 000<br>heures |
|       | 80 L      | 2        | 32               | 23                                                                                                               | 62               | 53               | -                | -                        | -                | -                | -                | -                | -                | -                |
|       | 80 LG     | 4        | -                | -                                                                                                                | -                | -                | 47               | 34                       | 87               | 74               | -                | -                | -                | -                |
|       | 90 S/SL/L | 2;4;6    | 29               | 20                                                                                                               | 69               | 59               | 45               | 32                       | 85               | 72               | 60               | 44               | 100              | 84               |
|       | 90 LU     | 4        | -                | -                                                                                                                | -                | -                | 42               | 28                       | 92               | 78               | -                | -                | -                | -                |
|       | 100 L     | 2;6      | 43               | 30                                                                                                               | 93               | 80               | -                | -                        | -                | -                | 85               | 63               | 135              | 113              |
|       | 100 LR    | 4        | -                | -                                                                                                                | -                | -                | 63               | 45                       | 113              | 95               | -                | -                | -                | -                |
|       | 100 LG    | 4        | -                | -                                                                                                                | -                | -                | 67               | 49                       | 117              | 99               | -                | -                | -                | -                |
|       | 112 MR    | 2        | 42               | 29                                                                                                               | 92               | 79               | -                | -                        | -                | -                | -                | -                | -                | -                |
|       | 112 MG    | 6        | -                | -                                                                                                                | -                | -                | -                | -                        | -                | -                | 81               | 60               | 131              | 110              |
|       | 112 MU    | 4        | -                | -                                                                                                                | -                | -                | 56               | 39                       | 116              | 98               | -                | -                | -                | -                |
|       | 132 S/SU  | 2;6      | 74               | 54                                                                                                               | 134              | 114              | -                | -                        | -                | -                | 131              | 99               | 191              | 159              |
|       | 132 SM/M  | 2;4;6    | 110              | 82                                                                                                               | 180              | 152              | 157              | 120                      | 227              | 190              | 190              | 146              | 260              | 216              |
|       | 132 MU    | 4;6      | -                | -                                                                                                                | -                | -                | 150              | 113                      | 230              | 193              | 180              | 136              | 260              | 216              |
|       | 160 MP    | 2        | 149              | 113                                                                                                              | 229              | 193              | -                | -                        | -                | -                | -                | -                | -                | -                |
| LSMV  | 160 MR/LR | 2;4      | 144              | 108                                                                                                              | 234              | 198              | 204              | 156                      | 294              | 246              | -                | -                | -                | -                |
| 20    | 160 L     | 2        | 126              | 91                                                                                                               | 226              | 191              | -                | -                        | -                | -                | -                | -                | -                | -                |
|       | 160 LUR   | 4        | -                | -                                                                                                                | -                | -                | 230              | 176                      | 278              | 224              | -                | -                | -                | -                |
|       | 180 M     | 4        | -                | -                                                                                                                | -                | -                | 243              | 188                      | 291              | 236              | -                | -                | -                | -                |
|       | 180 MT    | 2        | 158              | 117                                                                                                              | 258              | 217              | -                | -                        | -                | -                | -                | -                | -                | -                |
|       | 180 LUR   | 4        | -                | -                                                                                                                | -                | -                | 199              | 147                      | 262              | 210              | -                | -                | -                | -                |
|       | 200 LR    | 2        | 237              | 184                                                                                                              | 300              | 247              | -                | -                        | -                | -                | -                | -                | -                | -                |
|       | 200 L     | 2;4      | 249              | 195                                                                                                              | 315              | 261              | 325              | 253                      | 391              | 319              | -                | -                | -                | -                |
|       | 225 SR    | 4        |                  |                                                                                                                  |                  |                  | 339              | 261                      | 402              | 324              | -                | -                | -                | -                |
|       | 225 MT    | 2        | 279              | 219                                                                                                              | 345              | 285              | -                | -                        | -                | -                | -                | -                | -                | -                |
|       | 225 MG    | 4        | -                | -                                                                                                                | -                | -                | 378              | 290                      | 448              | 360              | -                | -                | -                | -                |
|       | 250 ME    | 4        | -                | -                                                                                                                | -                | -                | 392              | 303                      | 462              | 373              | -                | -                | -                | -                |
|       | 280 SD    | 4        | -                | -                                                                                                                | -                | -                | 429              | 246                      | 517              | 246              | -                | -                | -                | -                |
|       | 280 MK    | 4        | -                | -                                                                                                                | -                | -                | 632              | 521                      | 452              | 341              | -                | -                | -                | -                |
|       | 315 SP    | 4        | -                | -                                                                                                                | -                | -                | 792              | 650                      | 612              | 470              | -                | -                | -                | -                |
|       | 315 MR    | 4        | -                | -                                                                                                                | -                | -                | 753              | 613                      | 573              | 433              | -                | -                | -                | -                |

Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Construction

## **Charges axiales**

Moteur vertical Bout d'arbre en bas

Pour une durée de vie L<sub>10h</sub> des roulements à 25 000 heures et 40 000 heures



|        |           |          |                  | Charge axiale admissible (en daN) sur le bout d'arbre principal pour montage standard des roulements  IM V5 IM V1 / V15 IM V18 / V58 |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |
|--------|-----------|----------|------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|        |           |          |                  | 3000                                                                                                                                 | t/min '          |                  |                  | 1500             | t/min            |                  |                  | 1000             | t/min            |                  |
|        |           |          | 1                | <b>†</b>                                                                                                                             |                  |                  | •                | <b>7</b>         |                  |                  | ,                | <b>†</b>         |                  | <u> </u>         |
| Série  | Туре      | Polarité | 25 000<br>heures | 40 000<br>heures                                                                                                                     | 25 000<br>heures | 40 000<br>heures | 25 000<br>heures | 40 000<br>heures | 25 000<br>heures | 40 000<br>heures | 25 000<br>heures | 40 000<br>heures | 25 000<br>heures | 40 000<br>heures |
|        | 80 L      | 2        | 30               | 21                                                                                                                                   | 64               | 55               | -                | -                | -                | -                | -                | -                | -                | -                |
|        | 80 LG     | 4        | -                | -                                                                                                                                    | -                | -                | 45               | 32               | 92               | 78               | -                | -                | -                | -                |
|        | 90 S/SL/L | 2;4;6    | 27               | 17                                                                                                                                   | 74               | 64               | 42               | 29               | 91               | 78               | 56               | 41               | 106              | 90               |
|        | 90 LU     | 4        | -                | -                                                                                                                                    | -                | -                | 38               | 24               | 85               | 98               | -                | -                | -                | -                |
|        | 100 L     | 2;6      | 40               | 26                                                                                                                                   | 99               | 86               | -                | -                | -                | -                | 80               | 58               | 143              | 121              |
|        | 100 LR    | 4        | -                | -                                                                                                                                    | -                | -                | 57               | 39               | 122              | 104              | -                | -                | -                | -                |
|        | 100 LG    | 4        | -                | -                                                                                                                                    | -                | -                | 61               | 42               | 128              | 110              | -                | -                | -                | -                |
|        | 112 MR    | 2        | 38               | 25                                                                                                                                   | 99               | 86               | -                | -                | -                | -                | -                | -                | -                | -                |
|        | 112 MG    | 6        | -                | -                                                                                                                                    | -                | -                | -                | -                | -                | -                | 75               | 53               | 143              | 121              |
|        | 112 MU    | 4        | -                | -                                                                                                                                    | -                | -                | 49               | 31               | 129              | 111              | -                | -                | -                | -                |
|        | 132 S/SU  | 2;6      | 67               | 47                                                                                                                                   | 145              | 125              | -                | -                | -                | -                | 122              | 90               | 207              | 175              |
|        | 132 SM/M  | 2;4;6    | 101              | 73                                                                                                                                   | 196              | 168              | 145              | 108              | 247              | 210              | 179              | 134              | 279              | 235              |
|        | 132 MU    | 4;6      | -                | -                                                                                                                                    | -                | -                | 136              | 98               | 253              | 215              | 165              | 121              | 286              | 242              |
|        | 160 MP    | 2        | 137              | 101                                                                                                                                  | 249              | 212              | -                | -                | -                | -                | -                | -                | -                | -                |
| LSMV   | 160 MR/LR | 2;4      | 129              | 93                                                                                                                                   | 257              | 221              | 187              | 138              | 323              | 274              | -                | -                | -                | -                |
| LSIVIV | 160 L     | 2        | 104              | 69                                                                                                                                   | 262              | 226              | 156              | 109              | 317              | 270              | -                | -                | -                | -                |
|        | 160 LUR   | 4        | -                | -                                                                                                                                    | -                | -                | 204              | 149              | 328              | 274              | -                | -                | -                | -                |
|        | 180 M     | 4        | -                | -                                                                                                                                    | -                | -                | 210              | 156              | 345              | 290              | -                | -                | -                | -                |
|        | 180 MT    | 2        | 134              | 93                                                                                                                                   | 196              | 255              | -                | -                | -                | -                | -                | -                | -                | -                |
|        | 180 LUR   | 4        | -                | -                                                                                                                                    | -                | -                | 163              | 110              | 334              | 280              | -                | -                | -                | -                |
|        | 200 LR    | 2        | 202              | 148                                                                                                                                  | 358              | 304              | -                | -                | -                | -                | -                | -                | -                | -                |
|        | 200 L     | 2;4      | 211              | 156                                                                                                                                  | 370              | 316              | 276              | 203              | 472              | 400              | -                | -                | -                | -                |
|        | 225 SR    | 4        | -                | -                                                                                                                                    | -                | -                | 284              | 204              | 503              | 426              | -                | -                | -                | -                |
|        | 225 MT    | 2        | 238              | 177                                                                                                                                  | 408              | 347              | -                | -                | -                | -                | -                | -                | -                | -                |
|        | 225 MG    | 4        | -                | -                                                                                                                                    | -                | -                | 276              | 186              | 419              | 529              | -                | -                | -                | -                |
|        | 250 ME    | 4        | -                | -                                                                                                                                    | -                | -                | 299              | 208              | 626              | 535              | -                | -                | -                | -                |
|        | 280 SD    | 4        | -                | -                                                                                                                                    | -                | -                | 310              | 125              | 726              | 453              | -                | -                | -                | -                |
|        | 280 MK    | 4        | -                | -                                                                                                                                    | -                | -                | 453              | 340              | 725              | 612              | -                | -                | -                | -                |
|        | 315 SP    | 4        | -                | -                                                                                                                                    | -                | -                | 607              | 463              | 892              | 748              | -                | -                | -                | -                |
|        | 315 MR    | 4        | -                | -                                                                                                                                    | -                | -                | 521              | 378              | 952              | 808              | -                | -                | -                | -                |

Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Construction

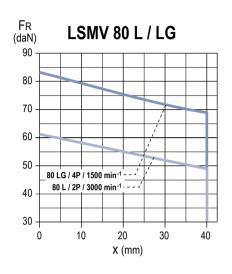
## **Charges axiales**

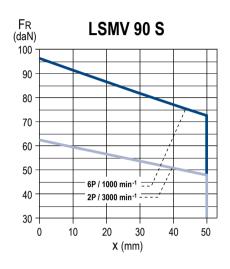
Moteur vertical Bout d'arbre en haut

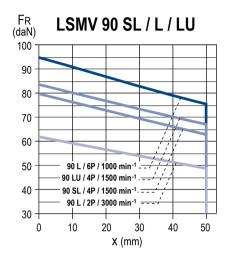
Pour une durée de vie L<sub>10h</sub> des roulements à 25 000 heures et 40 000 heures

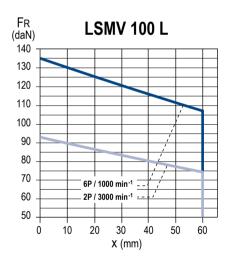


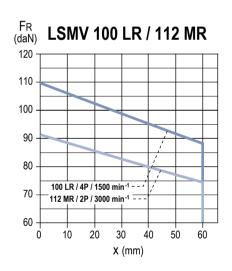
|       |           |          |                  | Charge axiale admissible (en daN) sur le bout d'arbre principal pour montage standard des roulements  IM V6 IM V3 / V36 IM V19 / V69 |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |
|-------|-----------|----------|------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|       |           |          |                  | 3000                                                                                                                                 | t/min            | <b>†</b>         |                  | 1500             | t/min            | 1                |                  | 1000             | t/min            | <b>\</b>         |
| Série | Туре      | Polarité | 25 000<br>heures | 40 000<br>heures                                                                                                                     | 25 000<br>heures | 40 000<br>heures | 25 000<br>heures | 40 000<br>heures | 25 000<br>heures | 40 000<br>heures | 25 000<br>heures | 40 000<br>heures | 25 000<br>heures | 40 000<br>heures |
|       | 80 L      | 2        | 60               | 51                                                                                                                                   | 34               | 25               | -                | -                | -                | -                | -                | -                | -                | -                |
|       | 80LG      | 4        | 69               | 59                                                                                                                                   | 35               | 25               | -                | -                | -                | -                | -                | -                | -                | -                |
|       | 90 S/SL/L | 2;4;6    | 67               | 57                                                                                                                                   | 34               | 24               | 82               | 69               | 51               | 38               | 96               | 81               | 66               | 50               |
|       | 90 LU     | 4        | -                | -                                                                                                                                    | -                | -                | 87               | 74               | 48               | 35               | -                | -                | -                | -                |
|       | 100 L     | 2;6      | 90               | 76                                                                                                                                   | 49               | 36               | -                | -                | -                | -                | 130              | 108              | 93               | 72               |
|       | 100 LR    | 4        | -                | -                                                                                                                                    | -                | -                | 107              | 89               | 72               | 54               | -                | -                | -                | -                |
|       | 100 LG    | 4        | -                | -                                                                                                                                    | -                | -                | 111              | 92               | 78               | 60               | -                | -                | -                | -                |
|       | 112 MR    | 2        | 88               | 75                                                                                                                                   | 49               | 36               | -                | -                | -                | -                | -                | -                | -                | -                |
|       | 112 MG    | 6        | -                | -                                                                                                                                    | -                | -                | -                | -                | -                | -                | 125              | 103              | 93               | 71               |
|       | 112 MU    | 4        | -                | -                                                                                                                                    | -                | -                | 109              | 91               | 69               | 51               | -                | -                | -                | -                |
|       | 132 S     | 2;6      | 127              | 107                                                                                                                                  | 86               | 66               | -                | -                | -                | -                | 182              | 150              | 147              | 115              |
|       | 132 SU    | 2        | -                | -                                                                                                                                    | -                | -                | 151              | 90               | 116              | 124              | -                | -                | -                | -                |
|       | 132 SM/M  | 2;4;6    | 171              | 143                                                                                                                                  | 126              | 98               | 215              | 178              | 177              | 140              | 249              | 205              | 209              | 165              |
|       | 132 MU    | 4;6      | -                | -                                                                                                                                    | -                | -                | 216              | 179              | 173              | 135              | 245              | 201              | 206              | 162              |
|       | 160 MP    | 2        | 217              | 181                                                                                                                                  | 169              | 132              | -                | -                | -                | -                | -                | -                | -                | -                |
| LSMV  | 160 MR/LR | 2;4      | 219              | 183                                                                                                                                  | 167              | 131              | 277              | 228              | 233              | 184              | -                | -                | -                | -                |
|       | 160 L     | 2        | 204              | 169                                                                                                                                  | 162              | 126              | -                | -                | -                | -                | -                | -                | -                | -                |
|       | 160 LUR   | 4        | -                | -                                                                                                                                    | -                | -                | 252              | 197              | 280              | 226              | -                | -                | -                | -                |
|       | 180 M     | 4        | -                | -                                                                                                                                    | -                | -                | 258              | 204              | 297              | 242              | -                | -                | -                | -                |
|       | 180 MT    | 2        | 234              | 193                                                                                                                                  | 196              | 155              | -                | -                | -                | -                | -                | -                | -                | -                |
|       | 180 LUR   | 4        | -                | -                                                                                                                                    | -                | -                | 248              | 194              | 285              | 231              | -                | -                | -                | -                |
|       | 200 LR    | 2        | 265              | 211                                                                                                                                  | 295              | 241              | -                | -                | -                | -                | -                | -                | -                | -                |
|       | 200 L     | 2;4      | 277              | 222                                                                                                                                  | 304              | 250              | 342              | 269              | 406              | 334              |                  | -                | -                | -                |
|       | 225 SR    | 4        | -                | -                                                                                                                                    | -                | -                | 347              | 267              | 440              | 360              | -                | -                | -                | -                |
|       | 225 MT    | 2        | 304              | 243                                                                                                                                  | 342              | 281              | -                | -                | -                | -                | -                | -                | -                | -                |
|       | 225 MG    | 4        | -                | -                                                                                                                                    | -                | -                | 346              | 256              | 549              | 459              | -                | -                | -                | -                |
|       | 250 ME    | 4        | -                | -                                                                                                                                    | -                | -                | 369              | 278              | 556              | 465              | -                | -                | -                | -                |
|       | 280 SD    | 4        | -                | -                                                                                                                                    | -                | -                | 398              | 125              | 638              | 453              | -                | -                | -                | -                |
|       | 280 MK    | 4        | -                | -                                                                                                                                    | -                | -                | 273              | 160              | 905              | 792              | -                | -                | -                | -                |
|       | 315 SP    | 4        | -                | -                                                                                                                                    | -                | -                | 427              | 283              | 1072             | 928              | -                | -                | -                | -                |
|       | 315 MR    | 4        | -                | -                                                                                                                                    | -                | -                | 341              | 198              | 1132             | 988              | -                | -                | -                | -                |


Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Construction


## **Charges radiales**

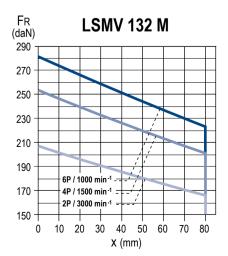

## **MONTAGE STANDARD**

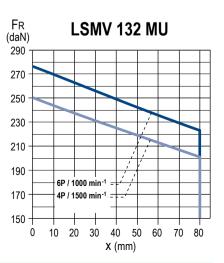

Charge radiale admissible sur le bout d'arbre principal, pour une durée de vie L10h des roulements de 25000 heures.


FR: Force Radiale







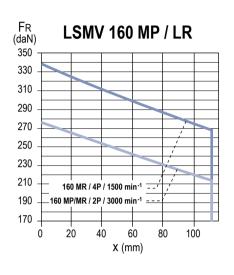


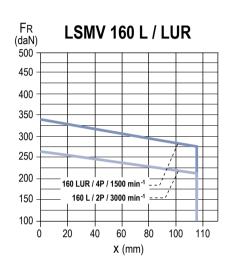


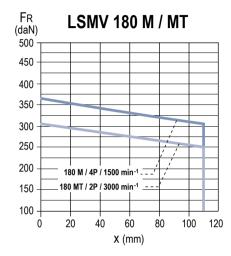


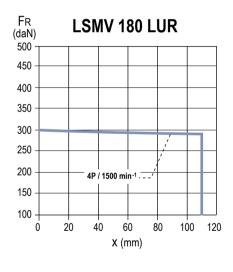


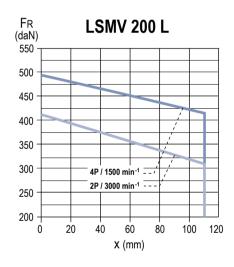


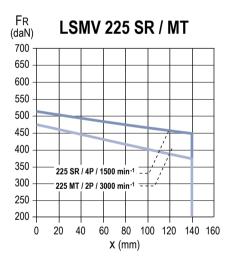


Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Construction

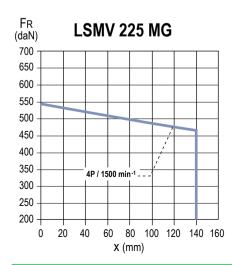

## **Charges radiales**

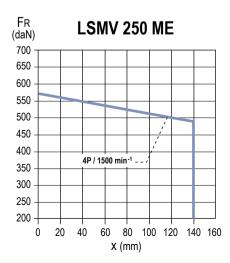

#### **MONTAGE STANDARD**

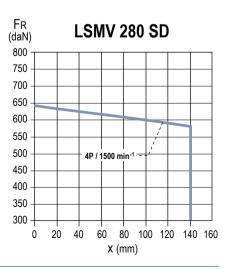

Charge radiale admissible sur le bout d'arbre principal, pour une durée de vie L10h des roulements de 25000 heures.


FR: Force Radiale



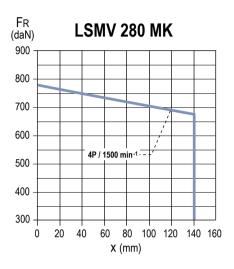


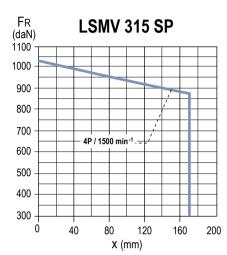


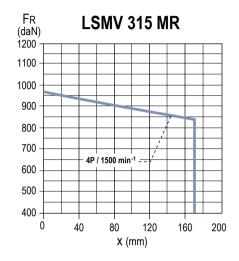








Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Construction


## **Charges radiales**


## **MONTAGE STANDARD**

Charge radiale admissible sur le bout d'arbre principal, pour une durée de vie L10h des roulements de 25000 heures.

FR: Force Radiale







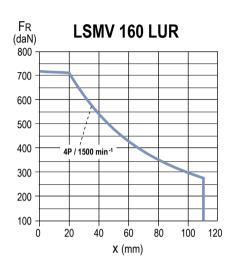
Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Construction

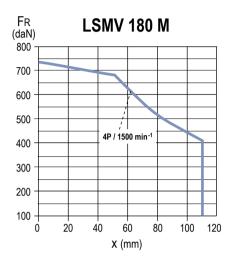
## **Charges radiales**

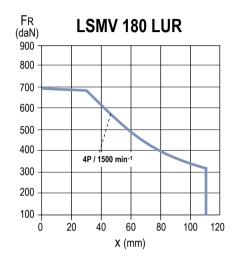
## **MONTAGE SPÉCIAL**

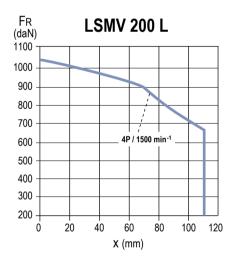
## Type de roulements à rouleaux à l'avant

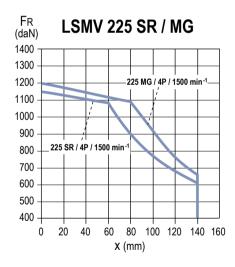
|       |           |          | Roulements g | graissés à vie |
|-------|-----------|----------|--------------|----------------|
| Série | Туре      | Polarité | N.D.E.       | D.E.           |
|       | 160 LUR   | 4        | 6210 C3      | NU 310         |
|       | 180 M     | 4        | 6212 C3      | NU 310         |
|       | 180 LUR   | 4        | 6312 C3      | NU 310         |
|       | 200 L     | 4        | 6214 C3      | NU 312         |
|       | 225 ST    | 4        | 6214 C3      | NU 313         |
| LSMV  | 225 SR    | 4        | 6312 C3      | NU 313         |
| LOWIV | 225 MT    | 4        | 6214 C3      | NU 313         |
|       | 225 MG    | 4        | 6216 C3      | NU 314         |
|       | 250 ME    | 4        | 6216 C3      | NU 314         |
|       | 280 SD    | 4        | 6218 C3      | NU 316         |
|       | 280 MK    | 4        | 6317 C3      | NU 317         |
|       | 315 SP/MR | 4        | 6317 C3      | NU 320         |

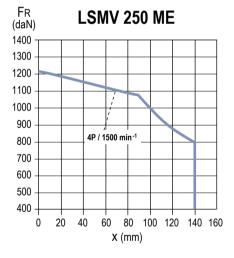

Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Construction

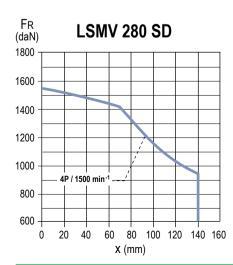

## **Charges radiales**

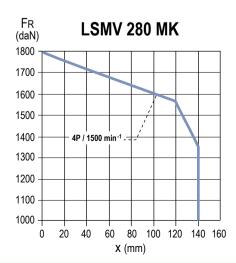

## **MONTAGE SPÉCIAL**

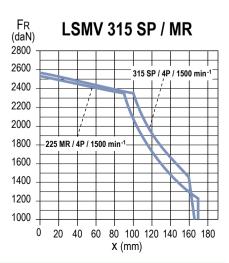

Charge radiale admissible sur le bout d'arbre principal, pour une durée de vie L10h des roulements de 25000 heures.


FR: Force Radiale









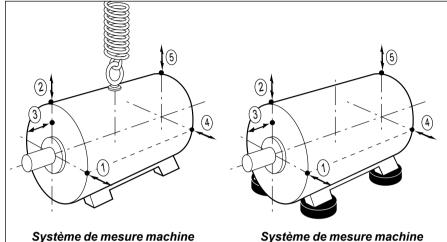





Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Construction

#### Niveau de vibration et vitesses maximales

## **NIVEAU DE VIBRATION DES MACHINES - ÉQUILIBRAGE**


dissymétries de construction (magnétique, mécanique et aéraulique) des machines conduisent à des vibrations sinusoïdales (ou pseudo sinusoïdales) réparties dans une large bande de fréquences. D'autres sources de vibrations viennent perturber le fonctionnement : mauvaise fixation du bâti, accouplement incorrect, désalignement des paliers, etc.

On s'intéressera en première approche aux vibrations émises à la fréquence de rotation, correspondant au balourd mécanique dont l'amplitude prépondérante sur toutes celles des autres fréquences et pour laquelle l'équilibrage dynamique des masses en rotation a une influence déterminante. Selon la norme ISO 8821, les machines tournantes peuvent être équilibrées avec ou sans clavette ou avec une demi clavette sur le bout d'arbre.

Selon les termes de la norme ISO 8821. le mode d'équilibrage est repéré par un marquage sur le bout d'arbre :

- équilibrage demi clavette : lettre H
- équilibrage clavette entière : lettre F
- équilibrage sans clavette : lettre N.

Les machines de ce catalogue sont de classe de vibration de niveau A-Le niveau B peut être réalisé sur demande particulière.



Système de mesure machine suspendue

sur plots élastiques

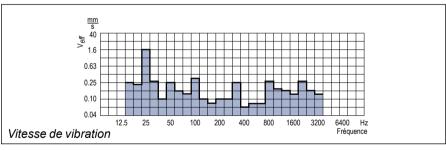
Les points de mesure retenus par les normes sont indiqués sur les figures ci-

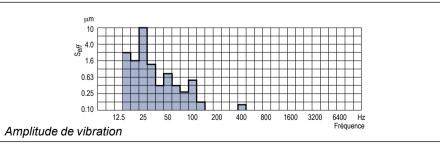
On rappelle qu'en chacun des points les résultats doivent être inférieurs à ceux indiqués dans les tableaux ci-après en fonction des classes d'équilibrage et seule la plus grande valeur est retenue comme «niveau de vibration».

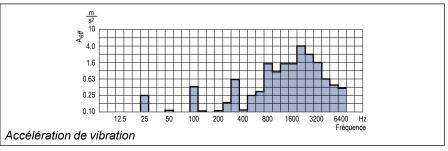
#### Grandeur mesurée

La vitesse de vibration peut être retenue comme grandeur mesurée. C'est la vitesse avec laquelle la machine se déplace autour de sa position de repos. Elle est mesurée en mm/s.

Puisque les mouvements vibratoires sont complexes et non harmoniques, c'est la moyenne quadratique (valeur efficace) de la vitesse de vibration qui sert de critère d'appréciation du niveau de vibration.


On peut également choisir, comme grandeur mesurée, l'amplitude de déplacement vibratoire (en µm) ou l'accélération vibratoire (en m/s<sup>2</sup>).


Si l'on mesure le déplacement vibratoire en fonction de la fréquence, la valeur mesurée décroît avec la fréquence : les phénomènes vibratoires à haute fréquence n'étant pas mesurables.


Si l'on mesure l'accélération vibratoire, la valeur mesurée croit avec la fréquence : les phénomènes vibratoires à basse fréquence (balourd mécanique) n'étant ici pas mesurables.

La vitesse efficace de vibration a été retenue comme grandeur mesurée par les normes.

Cependant, selon les habitudes, on gardera le tableau des amplitudes de vibration (pour le cas des vibrations sinusoïdales et assimilées).







Moteurs asynchrones triphasés à haut rendement pour variation de vitesse

Construction

## Niveau de vibration et vitesses maximales

Les moteurs sont niveau de vibration classe B à 100 Hz

# LIMITES DE MAGNITUDE VIBRATOIRE MAXIMALE, EN DÉPLACEMENT, VITESSE ET ACCÉLERATION EN VALEURS EFFICACES POUR UNE HAUTEUR D'AXE H (CEI 60034-14)

|           |                   | Hauteur d'axe H (mm) |                                  |                   |                 |                                  |                   |                 |                                  |  |  |  |  |
|-----------|-------------------|----------------------|----------------------------------|-------------------|-----------------|----------------------------------|-------------------|-----------------|----------------------------------|--|--|--|--|
| Niveau de |                   | 80 < H ≤ 132         |                                  |                   | 132 < H ≤ 280   |                                  | H > 280           |                 |                                  |  |  |  |  |
| vibration | Déplacement<br>µm | Vitesse<br>mm/s      | Accélération<br>m/s <sup>2</sup> | Déplacement<br>µm | Vitesse<br>mm/s | Accélération<br>m/s <sup>2</sup> | Déplacement<br>µm | Vitesse<br>mm/s | Accélération<br>m/s <sup>2</sup> |  |  |  |  |
| A         | 25                | 1,6                  | 2,5                              | 35                | 2,2             | 3,5                              | 45                | 2,8             | 4,4                              |  |  |  |  |
| В         | 11                | 0,7                  | 1,1                              | 18                | 1,1             | 1,7                              | 29                | 1,8             | 2,8                              |  |  |  |  |

Pour les grosses machines et les besoins spéciaux en niveau de vibrations, un équilibrage *in situ* (montage fini) peut être réalisé. Dans cette situation, un accord doit être établi, car les dimensions des machines peuvent être modifiées à cause de l'adjonction nécessaire de disques d'équilibrage montés sur les bouts d'arbres.

## VITESSES MÉCANIQUES LIMITES DES MOTEURS EN VARIATION DE FRÉQUENCE

Avec des plages de fréquence de plus en plus larges, les variateurs de fréquence peuvent, en théorie, piloter un moteur de 2 à 3 fois sa vitesse nominale.

Toutefois, les roulements et la classe d'équilibrage choisis pour le rotor ne

permettent pas de dépasser une vitesse mécanique maximale sans mettre en danger le moteur et sa durée de vie.

Le tableau ci-dessous précise les vitesses maxi supportables par les moteurs LSMV en fonctionnement horizontal et vertical.

Ces valeurs de vitesse limites sont données pour des moteurs accouplés directement à la machine entraînée (sans charge radiale ni axiale). La relation permettant de calculer l'intervalle de graissage l'g à la fréquence f' est en moyenne :

$$I'g = \frac{25lg}{f'}$$

I'g = intervalle de graissage

#### Vitesses mécaniques maximales des moteurs LSMV 2, 4 et 6 P

| Туре     | 80    | 90    | 100   | 112   | 132  | 160  | 160 LUR | 180  | 200  | 225 SR/MT | 225 MG* | 250  | 280 SD | 280 MK | 315  |
|----------|-------|-------|-------|-------|------|------|---------|------|------|-----------|---------|------|--------|--------|------|
| Vitesses | 15000 | 12000 | 10000 | 10000 | 7500 | 6000 | 6000    | 5600 | 4500 | 4300      | 4000    | 4000 | 3400   | 3200   | 2700 |

<sup>\*</sup> Pour n > 3000 min<sup>-1</sup>, mettre des paliers à roulements avec graisseur.

Toute construction de moteurs tournant sous tension à plus de 4000 min<sup>-1</sup> fait l'objet d'une étude particulière. Dans le cas de moteurs avec freins, pour les vitesses limites, se reporter aux tableaux de sélection des freins. Pour les options codeurs, le fonctionnement à haute vitesse peut générer une saturation des signaux.

Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Informations générales

## **Engagement Qualité**

Le système de management de la qualité Leroy-Somer s'appuie sur :

- la maîtrise des processus depuis la démarche commerciale de l'offre jusqu'à la livraison chez le client, en passant par les études, le lancement en fabrication et la production.
- une politique de qualité totale fondée sur une conduite de progrès permanent dans l'amélioration continue de ces processus opérationnels, avec la mobilisation de tous les services de l'entreprise pour satisfaire les clients en délai, conformité, coût.
- des indicateurs permettant le suivi des performances des processus.
- des actions correctives et de progrès avec des outils tels que AMDEC, QFD, MAVP, MSP/MSQ et des chantiers d'améliorations type Hoshin des flux, reengineering de processus, ainsi que le Lean Manufacturing et le Lean Office.
- des enquêtes d'opinion annuelles, des sondages et des visites régulières auprès des clients pour connaître et détecter leurs attentes.

Le personnel est formé et participe aux analyses et aux actions d'amélioration continu des processus.

Leroy-Somer a confié la certification de son savoir-faire à des organismes internationaux.

Ces certifications sont accordées par des auditeurs professionnels et indépendants qui constatent le bon fonctionnement du système assurance qualité de l'entreprise. Ainsi, l'ensemble des activités, contribuant à l'élaboration du produit, est officiellement certifié ISO 9001: 2008 par le DNV. De même, notre approche environnementale a permis l'obtention de la certification ISO 14001: 2004.

Les produits pour des applications particulières ou destinés à fonctionner dans des environnements spécifiques, sont également homologués ou certifiés par des organismes : LCIE, DNV, INERIS, UL, CSA, BSRIA, TUV, GOST, qui vérifient leurs performances techniques par rapport aux différentes normes ou recommandations.























Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Informations générales

Normes et agréments

Les moteurs sont conformes aux normes citées dans ce catalogue

## LISTE DES NORMES CITÉES DANS CE DOCUMENT

| Référence                |             | Normes Internationales                                                                                                                                                                            |
|--------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CEI 60034-1              | EN 60034-1  | Machines électriques tournantes : caractéristiques assignées et caractéristiques de fonctionnement.                                                                                               |
| CEI 60034-2              |             | Machines électriques tournantes : méthodes normalisées pour la détermination des pertes et du rendement à partir d'essais (pertes supplémentaires forfaitaires)                                   |
| CEI 60034-2-1            |             | Machines électriques tournantes : méthodes normalisées pour la détermination des pertes et du rendement à partir d'essais (pertes supplémentaires mesurées)                                       |
| CEI 60034-5              | EN 60034-5  | Machines électriques tournantes : classification des degrés de protection procurés par les enveloppes des machines tournantes.                                                                    |
| CEI 60034-6              | EN 60034-6  | Machines électriques tournantes (sauf traction) : modes de refroidissement.                                                                                                                       |
| CEI 60034-7              | EN 60034-7  | Machines électriques tournantes (sauf traction) : symbole pour les formes de construction et les dispositions de montage.                                                                         |
| CEI 60034-8              |             | Machines électriques tournantes : marques d'extrémités et sens de rotation.                                                                                                                       |
| CEI 60034-9              | EN 60034-9  | Machines électriques tournantes : limites de bruit.                                                                                                                                               |
| CEI 60034-12             | EN 60034-12 | Caractéristiques du démarrage des moteurs triphasés à induction à cage à une seule vitesse pour des tensions d'alimentation inférieures ou égales à 660V.                                         |
| CEI 60034-14             | EN 60034-14 | Machines électriques tournantes : vibrations mécaniques de certaines machines de hauteur d'axe supérieure ou égale à 56 mm.  Mesure, évaluation et limites d'intensité vibratoire.                |
| CEI 60034-17             |             | Moteurs à induction à cage alimentés par convertisseurs - Guide d'application                                                                                                                     |
| CEI 60034-30-1           |             | Machines électriques tournantes : classes de rendement pour les moteurs à induction triphasés à cage, mono vitesse (Code IE)                                                                      |
| CEI 60038                |             | Tensions normales de la CEI.                                                                                                                                                                      |
| CEI 60072-1              |             | Dimensions et séries de puissances des machines électriques tournantes : désignation des carcasses entre 56 et 400 et des brides entre 55 et 1080.                                                |
| CEI 60085                |             | Évaluation et classification thermique de l'isolation électrique.                                                                                                                                 |
| CEI 60721-2-1            |             | Classification des conditions d'environnement dans la nature. Température et humidité.                                                                                                            |
| CEI 60892                |             | Effets d'un système de tensions déséquilibré, sur les caractéristiques des moteurs asynchrones triphasés à cage.                                                                                  |
| CEI 61000-2-10/11 et 2-2 |             | Compatibilité électromagnétique (CEM) : environnement.                                                                                                                                            |
| Guide 106 CEI            |             | Guide pour la spécification des conditions d'environnement pour la fixation des caractéristiques de fonctionnement des matériels.                                                                 |
| ISO 281                  |             | Roulements - Charges dynamiques de base et durée nominale.                                                                                                                                        |
| ISO 1680                 | EN 21680    | Acoustique - Code d'essai pour la mesure de bruit aérien émis par les machines électriques tournantes : méthode d'expertise pour les conditions de champ libre au-dessus d'un plan réfléchissant. |
| ISO 8821                 |             | Vibrations mécaniques - Équilibrage. Conventions relatives aux clavettes d'arbre et aux éléments rapportés.                                                                                       |
|                          | EN 50102    | Degré de protection procuré par les enveloppes électriques contre les impacts mécaniques extrêmes.                                                                                                |
| ISO 12944-2              |             | Catégorie de corrosivité                                                                                                                                                                          |

Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Informations générales

## Normes et agréments



#### **HOMOLOGATIONS**

Certains pays imposent ou conseillent l'obtention d'agréments auprès d'organismes nationaux. Les produits certifiés devront porter la marque reconnue sur la plaque signalétique.

| Pays   | Sigle | Organisme                      |
|--------|-------|--------------------------------|
| USA    | UL    | Underwriters Laboratories      |
| CANADA | CSA   | Canadian Standards Association |
| etc.   |       |                                |

#### Certification des moteurs LEROY-SOMER (constructions dérivées de la construction standard) :

| Pays            | Sigle           | N° de certificat   | Application                                 |
|-----------------|-----------------|--------------------|---------------------------------------------|
| USA + CANADA    | c <b>FL</b> °us | E 68554<br>E206450 | Systèmes d'imprégnation<br>Moteurs complets |
| ARABIE SAOUDITE | SASO            |                    | Gamme standard                              |
| FRANCE          | LCIE<br>INERIS  | Divers nos         | Etanchéité, chocs,<br>sécurité              |

Pour produits spécifiques homologués, se référer aux documents dédiés.

#### Correspondances des normes internationales et nationales

|          | Normes internationales de référence                                                             | Normes nationales                        |                                                                              |                |             |                 |  |  |  |  |
|----------|-------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------|----------------|-------------|-----------------|--|--|--|--|
| CEI      | Titre (résumé)                                                                                  | FRANCE                                   | ALLEMAGNE                                                                    | ANGLETERRE     | ITALIE      | SUISSE          |  |  |  |  |
| 60034-1  | Caractéristiques assignées et caractéristiques de fonctionnement                                | NFEN 60034-1<br>NFC 51-120<br>NFC 51-200 | DIN/VDE O530                                                                 | BS 4999        | CEI 2.3.VI. | SEV ASE 3009    |  |  |  |  |
| 60034-5  | Classification des degrés de protection                                                         | NFEN 60034-5                             | DIN/EN 60034-5                                                               | BS EN 60034-5  | UNEL B 1781 |                 |  |  |  |  |
| 60034-6  | Modes de refroidissement                                                                        | NFEN 60034-6                             | DIN/EN 60034-6                                                               | BS EN 60034-6  |             |                 |  |  |  |  |
| 60034-7  | Formes de construction et disposition de montage                                                | NFEN 60034-7                             | DIN/EN 60034-7                                                               | BS EN 60034-7  |             |                 |  |  |  |  |
| 60034-8  | Marques d'extrémité et sens de rotation                                                         | NFC 51 118                               | DIN/VDE 0530<br>Teil 8                                                       | BS 4999-108    |             |                 |  |  |  |  |
| 60034-9  | Limites de bruit                                                                                | NFEN 60034-9                             | DIN/EN 60034-9                                                               | BS EN 60034-9  |             |                 |  |  |  |  |
| 60034-12 | Caractéristiques de démarrage des moteurs<br>à une vitesse alimentés sous tension ≤ 660 V       | NFEN 60034-12                            | DIN/EN 60034-12                                                              | BS EN 60034-12 |             | SEV ASE 3009-12 |  |  |  |  |
| 60034-14 | Vibrations mécaniques de machines<br>de hauteur d'axe ≥ 56 mm                                   | NFEN 60034-14                            | DIN/EN 60034-14                                                              | BS EN 60034-14 |             |                 |  |  |  |  |
| 60072-1  | Dimensions et séries de puissances des machines entre 56 et 400 et des brides entre 55 et 1080. | NFC 51 104<br>NFC 51 105                 | DIN 748 (~)<br>DIN 42672<br>DIN 42673<br>DIN 42631<br>DIN 42676<br>DIN 42677 | BS 4999        |             |                 |  |  |  |  |
| 60085    | Evaluation et classification thermique de l'isolation électrique                                | NFC 26206                                | DIN/EN 60085                                                                 | BS 2757        |             | SEV ASE 3584    |  |  |  |  |

Nota: Les tolérances de la DIN 748 ne sont pas conformes à la CEI 60072-1.

Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Informations générales

figure 6).

## Définition des services types

#### **SERVICES TYPES**

(selon CEI 60034-1)

Les services types sont les suivants :

1 - Service continu - Service type S1 Fonctionnement à charge constante d'une durée suffisante pour que l'équilibre thermique soit atteint (voir figure 1).

# 2 - Service temporaire - Service type S2

Fonctionnement à charge constante pendant un temps déterminé, moindre que celui requis pour atteindre l'équilibre thermique, suivi d'un repos d'une durée suffisante pour rétablir à 2 K près l'égalité de température entre la machine et le fluide de refroidissement (voir figure 2).

# 3 - Service intermittent périodique - Service type S3

Suite de cycles de service identiques comprenant chacun une période de fonctionnement à charge constante et une période de repos (voir figure 3). Dans ce service, le cycle est tel que le courant de démarrage n'affecte pas l'échauffement de façon significative (voir figure 3).

# 4 - Service intermittent périodique à démarrage - Service type S4

Suite de cycles de service identiques comprenant une période appréciable de démarrage, une période de fonctionnement à charge constante et une période de repos (voir figure 4).

# 5 - Service intermittent périodique à freinage électrique - Service type S5

Suite de cycles de service périodiques comprenant chacun une période de démarrage, une période de fonctionnement à charge constante, une période de freinage électrique rapide et une période de repos (voir figure 5).

# 6 - Service ininterrompu périodique à charge intermittente - Service type \$6 Suite de cycles de service identiques comprenant chacun une période de fonctionnement à charge constante et une période de fonctionnement à vide. Il n'existe pas de période de repos (voir

# 7 - Service ininterrompu périodique à freinage électrique - Service type S7

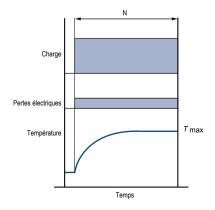
Suite de cycles de service identiques comprenant chacun une période de démarrage, une période de fonctionnement à charge constante et une période de freinage électrique. Il n'existe pas de période de repos (voir figure 7).

# 8 - Service ininterrompu périodique à changements liés de charge et de vitesse - Service type S8

Suite de cycles de service identiques comprenant chacun une période de fonctionnement à charge constante correspondant à une vitesse de rotation prédéterminée, suivie d'une ou plusieurs périodes de fonctionnement à d'autres charges constantes correspondant à différentes vitesses de rotation (réalisées par exemple par changement du nombre de pôles dans le cas des moteurs à induction). Il n'existe pas de période de repos (voir figure 8).

#### 9 - Service à variations non périodiques de charge et de vitesse -Service type S9

Service dans lequel généralement la charge et la vitesse ont une variation non périodique dans la plage de fonctionnement admissible. Ce service inclut fréquemment des surcharges appliquées qui peuvent être largement supérieures à la pleine charge (ou aux pleines charges) (voir figure 9).


Note. - Pour ce service type, des valeurs appropriées à pleine charge devront être considérées comme bases du concept de surcharge.

# 10 - Service à régimes constants distincts - Service type S10

Service comprenant au plus quatre valeurs distinctes de charges (ou charges équivalentes), chaque valeur étant appliquée pendant une durée suffisante pour que la machine atteigne l'équilibre thermique. La charge minimale pendant un cycle de charge peut avoir la valeur zéro (fonctionnement à vide ou temps de repos) (voir figure 10).

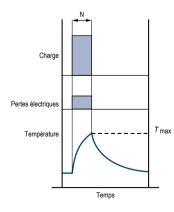

Note : seuls les services S1 et S3 avec un facteur de service de 80% ou plus sont concernés par la CEI 60034-30

Fig. 1. - Service continu. Service type S1.



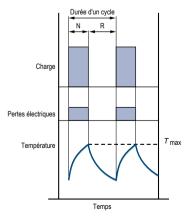

N = fonctionnement à charge constante  $T_{\text{max}}$  = température maximale atteinte

Fig. 2. - Service temporaire. Service type S2.



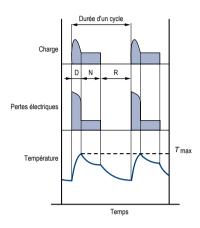
N = fonctionnement à charge constante  $T_{\text{max}}$  = température maximale atteinte

Fig. 3. - Service intermittent périodique. Service type S3.



N = fonctionnement à charge constante

R = repos


 $T_{\text{max}}$  = température maximale atteinte

Facteur de marche (%) =  $\frac{N}{N+R} \cdot 100$ 

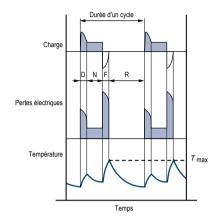
Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Informations générales

## Définition des services types

Fig. 4. - Service intermittent périodique à démarrage. Service type S4.



D = démarrage


N = fonctionnement à charge constante

R = repos

T<sub>max</sub> = température maximale atteinte au cours du cycle

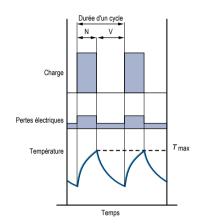
Facteur de marche (%) =  $\frac{D+N}{N+R+D}$  • 100

Fig. 5. - Service intermittent périodique à freinage électrique. Service type S5.



D = démarrage

N = fonctionnement à charge constante


F = freinage électrique

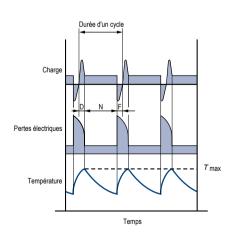
R = repos

T<sub>max</sub> = température maximale atteinte au cours du cycle

Facteur de marche (%) =  $\frac{D + N + F}{D + N + F + R} \cdot 100$ 

Fig. 6. - Service ininterrompu périodique à charge intermittente. Service type S6.




N = fonctionnement à charge constante

V = fonctionnement à vide

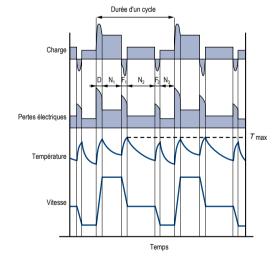
T<sub>max</sub> = température maximale atteinte au cours du cycle

Facteur de marche (%) =  $\frac{N}{N+V} \cdot 100$ 

Fig. 7. - Service ininterrompu périodique à freinage électrique. Service type S7.



D = démarrage


N = fonctionnement à charge constante

F = freinage électrique

T<sub>max</sub> = température maximale atteinte au cours du cycle

Facteur de marche = 1

Fig. 8. - Service ininterrompu périodique à changements liés de charge et de vitesse. Service type S8.



F<sub>1</sub>F<sub>2</sub> = freinage électrique

D = démarrage

N<sub>1</sub>N<sub>2</sub>N<sub>3</sub> = fonctionnement à charges constantes.

T<sub>max</sub> = température maximale atteinte au cours

Facteur de marche = 
$$\frac{D + N_1}{D + N_1 + F_1 + N_2 + F_2 + N_3} 100 \%$$

$$\frac{F_1 + N_2}{D + N_1 + F_1 + N_2 + F_2 + N_3} 100 \%$$

$$\frac{F_2 + N_3}{D + N_1 + F_1 + N_2 + F_2 + N_3} 100 \%$$

Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Informations générales

## Définition des services types

Fig. 9. - Service à variations non périodiques de charge et de vitesse. Service type S9.

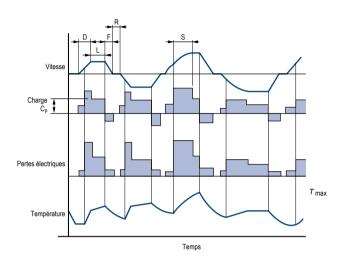
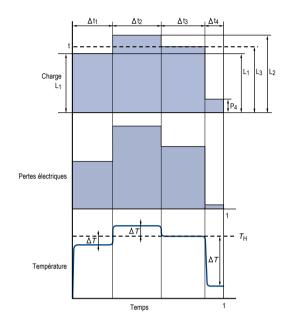
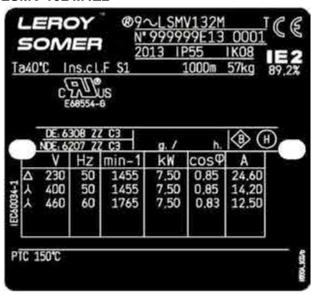




Fig. 10 - Service à régimes constants distincts. Service type S10.



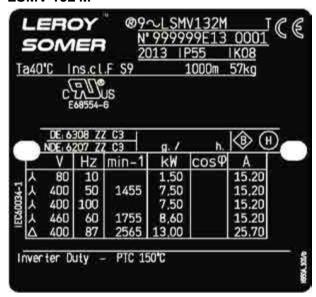
- D = démarrage.
- Example 1
   L = fonctionnement sous des charges variables.
- F = freinage électrique.
- R = repos.
- S = fonctionnement sous surcharge.
- C<sub>p</sub> = pleine charge.
- $T_{\text{max}}$  = température maximale atteinte.

- L = charge.
- N = puissance nominale pour le service type S1.
- $p = p / \frac{L}{N} = charge réduite.$
- t = temps.
- T<sub>D</sub> = durée d'un cycle de régimes.
- t<sub>i</sub> = durée d'un régime à l'intérieur d'un cycle.
- $\Delta t_i = t_i / T_p = \text{dur\'ee relative (p.u.) d'un r\'egime}$ à l'intérieur d'un cycle.
- Pu = pertes électriques.
- H<sub>N</sub> = température à puissance nominale pour un service type S1.
- ΔH<sub>i</sub> = augmentation ou diminution de l'échauffement lors du i-ième régime du cycle.


Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Informations générales

## Identification

# Les moteurs sont certifiés • 🕦 👊 en standard jusqu'au 160MR/MP


#### **PLAQUES SIGNALÉTIQUES**

#### **LSMV 132 M IE2**



Plaque 1

#### **LSMV 132 M**



Plaque 2

## DÉFINITION DES SYMBOLES DES PLAQUES SIGNALÉTIQUES



Repère légal de la conformité du matériel aux exigences des Directives Européennes



Conformité du matériel aux exigences des Directives Canadiennes et Américaines

MOT 3 ~ : Moteur triphasé alternatif **LSMV** : Série

132 : Hauteur d'axe M : Symbole de carter : Repère d'imprégnation т

N° moteur

999999 : Numéro série moteur Ν : Mois de production 12 : Année de production 0001 : N° d'ordre dans la série

IE2 : Classe de rendement 89,2% : Rendement à 4/4 de charge IP55 IK08: Indice de protection

: Classe d'isolation F 40°C : Température d'ambiance

contractuelle de fonctionnement

S1 ou S9 : Service - Facteur de marche

: Masse kq

I cl. F

V : Tension d'alimentation Hz : Fréquence d'alimentation min-1 : Nombre de tours par minute kW : Puissance assignée

: Facteur de puissance cos o : Intensité assignée A

- Plaque 1 : sur réseau - Plaque 2 : sur variateur de fréquence

: Branchement triangle Δ Y : Branchement étoile

#### Roulements

DE : Drive end

Roulement côté entraînement

**NDE** : Non drive end

Roulement côté opposé

à l'entraînement

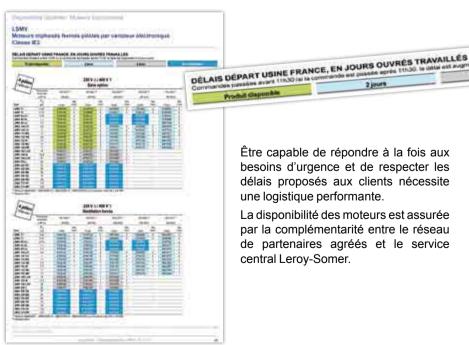
: Niveau de vibration

(H): Mode d'équilibrage

Informations à rappeler pour toute commande de pièces détachées

Moteurs asynchrones triphasés à haut rendement pour variation de vitesse Informations générales

## Configurateur




Le configurateur leroy-Somer permet

- d'effectuer le choix des moteurs les plus appropriés et fournit les spécifications techniques et plans correspondants.
- Inscription en ligne : http://www.nidecautomation.com/ fr-FR/leroy-somer-motors-drives/ Products/Configurator/
- · Aide à la sélection de produits
- Édition des spécifications techniques
- Édition de fichiers CAO 2D et 3D
- L'équivalent de 400 catalogues en 16 langues.



## Disponibilité des produits



Être capable de répondre à la fois aux besoins d'urgence et de respecter les délais proposés aux clients nécessite une logistique performante.

La disponibilité des moteurs est assurée par la complémentarité entre le réseau de partenaires agréés et le service central Leroy-Somer.

Les grilles de sélection du catalogue «Disponibilité Garantie Systèmes d'entraînement» précisent pour chaque famille sous forme de code couleur et en fonction des quantités par commande, le délai des produits.

Consulter Leroy-Somer.

Moteurs asynchrones triphasés à haut rendement pour variation de vitesse

## **Notes**

Moteurs asynchrones triphasés à haut rendement pour variation de vitesse

| N  | 0 | t | ۵ | S |
|----|---|---|---|---|
| 17 | v | u | • | J |

Moteurs asynchrones triphasés à haut rendement pour variation de vitesse

## **Notes**

